
Drew Higgins

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2674880/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Gas-Diffusion Electrodes for Carbon Dioxide Reduction: A New Paradigm. ACS Energy Letters, 2019, 4, 317-324.	8.8	416
2	Designing Boron Nitride Islands in Carbon Materials for Efficient Electrochemical Synthesis of Hydrogen Peroxide. Journal of the American Chemical Society, 2018, 140, 7851-7859.	6.6	310
3	Electrochemical Carbon Monoxide Reduction on Polycrystalline Copper: Effects of Potential, Pressure, and pH on Selectivity toward Multicarbon and Oxygenated Products. ACS Catalysis, 2018, 8, 7445-7454.	5.5	305
4	Understanding the Origin of Highly Selective CO ₂ Electroreduction to CO on Ni,Nâ€doped Carbon Catalysts. Angewandte Chemie - International Edition, 2020, 59, 4043-4050.	7.2	148
5	Guiding Electrochemical Carbon Dioxide Reduction toward Carbonyls Using Copper Silver Thin Films with Interphase Miscibility. ACS Energy Letters, 2018, 3, 2947-2955.	8.8	75
6	Supported and coordinated single metal site electrocatalysts. Materials Today, 2020, 37, 93-111.	8.3	71
7	Crystalline Strontium Iridate Particle Catalysts for Enhanced Oxygen Evolution in Acid. ACS Applied Energy Materials, 2019, 2, 5490-5498.	2.5	61
8	Electro-Oxidation of Methane on Platinum under Ambient Conditions. ACS Catalysis, 2019, 9, 7578-7587.	5.5	53
9	Understanding the Origin of Highly Selective CO ₂ Electroreduction to CO on Ni,Nâ€doped Carbon Catalysts. Angewandte Chemie, 2020, 132, 4072-4079.	1.6	48
10	Copper Silver Thin Films with Metastable Miscibility for Oxygen Reduction Electrocatalysis in Alkaline Electrolytes. ACS Applied Energy Materials, 2018, 1, 1990-1999.	2.5	40
11	In Situ X-Ray Absorption Spectroscopy Disentangles the Roles of Copper and Silver in a Bimetallic Catalyst for the Oxygen Reduction Reaction. Chemistry of Materials, 2020, 32, 1819-1827.	3.2	30
12	Bridging Thermal Catalysis and Electrocatalysis: Catalyzing CO ₂ Conversion with Carbonâ€Based Materials. Angewandte Chemie - International Edition, 2021, 60, 17472-17480.	7.2	21
13	Understanding Degradation Mechanisms in SrIrO ₃ Oxygen Evolution Electrocatalysts: Chemical and Structural Microscopy at the Nanoscale. Advanced Functional Materials, 2021, 31, 2101542.	7.8	16
14	A Spin Coating Method To Deposit Iridium-Based Catalysts onto Silicon for Water Oxidation Photoanodes. ACS Applied Materials & Interfaces, 2020, 12, 5901-5908.	4.0	12
15	Dynamics and Hysteresis of Hydrogen Intercalation and Deintercalation in Palladium Electrodes: A Multimodal <i>In Situ</i> X-ray Diffraction, Coulometry, and Computational Study. Chemistry of Materials, 2021, 33, 5872-5884.	3.2	11
16	Impact of Nickel Content on the Structure and Electrochemical CO ₂ Reduction Performance of Nickel–Nitrogen–Carbon Catalysts Derived from Zeolitic Imidazolate Frameworks. ACS Applied Energy Materials, 2022, 5, 430-439.	2.5	11
17	CO as a Probe Molecule to Study Surface Adsorbates during Electrochemical Oxidation of Propene. ChemElectroChem, 2021, 8, 250-256.	1.7	9
18	Understanding the impact of nitrogen doping and/or amine functionalization of reduced graphene oxide via hydrothermal routes for supercapacitor applications. Electrochimica Acta, 2021, 397, 139241.	2.6	9

#	Article	IF	CITATIONS
19	Identifying Activity and Selectivity Trends for the Electrosynthesis of Hydrogen Peroxide via Oxygen Reduction on Nickel–Nitrogen–Carbon Catalysts. Journal of Physical Chemistry C, 2021, 125, 15830-15840.	1.5	8
20	Tunable Hydroxyapatite/Magnetite Nanohybrids with Preserved Magnetic Properties. Advanced Materials Interfaces, 2022, 9, .	1.9	2
21	Bridging Thermal Catalysis and Electrocatalysis: Catalyzing CO 2 Conversion with Carbonâ€Based Materials. Angewandte Chemie, 2021, 133, 17613-17621.	1.6	1