Narayan Bhattarai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2674155/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electrodynamic assisted self-assembled fibrous hydrogel microcapsules: a novel 3D <i>in vitro</i> platform for assessment of nanoparticle toxicity. RSC Advances, 2021, 11, 4921-4934.	3.6	8
2	Nanonet-nano fiber electrospun mesh of PCL–chitosan for controlled and extended release of diclofenac sodium. Nanoscale, 2020, 12, 23556-23569.	5.6	35
3	Nano-fibre Integrated Microcapsules: A Nano-in-Micro Platform for 3D Cell Culture. Scientific Reports, 2019, 9, 13951.	3.3	9
4	Embedding magnesium metallic particles in polycaprolactone nanofiber mesh improves applicability for biomedical applications. Acta Biomaterialia, 2019, 98, 215-234.	8.3	57
5	Magnesium oxide-poly(ε-caprolactone)-chitosan-based composite nanofiber for tissue engineering applications. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2018, 228, 18-27.	3.5	67
6	Dose-response in a high density three-dimensional liver device with real-time bioenergetic and metabolic flux quantification. Toxicology in Vitro, 2017, 45, 119-127.	2.4	6
7	Fabrication and Characterization of Magnesium Ferrite-Based PCL/Aloe Vera Nanofibers. Materials, 2017, 10, 937.	2.9	24
8	Aloe Vera for Tissue Engineering Applications. Journal of Functional Biomaterials, 2017, 8, 6.	4.4	128
9	pH-Responsive PLGA Nanoparticle for Controlled Payload Delivery of Diclofenac Sodium. Journal of Functional Biomaterials, 2016, 7, 21.	4.4	82
10	Natural Polysaccharide-Based Hydrogels for Controlled Localized Drug Delivery. , 2016, , 35-59.		2
11	Magnesium incorporated chitosan based scaffolds for tissue engineering applications. Bioactive Materials, 2016, 1, 132-139.	15.6	47
12	Synthesis of Keratin-based Nanofiber for Biomedical Engineering. Journal of Visualized Experiments, 2016, , e53381.	0.3	8
13	Electrospun nanofibers of poly(ε-caprolactone)/depolymerized chitosan for respiratory tissue engineering applications. Journal of Biomaterials Science, Polymer Edition, 2016, 27, 611-625.	3.5	56
14	Facile fabrication of aloe vera containing PCL nanofibers for barrier membrane application. Journal of Biomaterials Science, Polymer Edition, 2016, 27, 692-708.	3.5	44
15	Synthesis and characterization of magnesium gluconate contained poly(lactic-co-glycolic) Tj ETQq1 1 0.784314 Technology, 2016, 203, 59-66.	rgBT /Ovei 3.5	lock 10 Tf 5 9
16	Magnesium Incorporated Polycaprolactone-Based Composite Nanofibers. , 2015, , .		1
17	Fabrication and Characterization of Electrospun PCL-MgO-Keratin-Based Composite Nanofibers for Biomedical Applications. Materials, 2015, 8, 4080-4095.	2.9	77
18	Poly(Îμ-caprolactone)/keratin-based composite nanofibers for biomedical applications. , 2015, 103, 21-30.		107

NARAYAN BHATTARAI

#	Article	IF	CITATIONS
19	Gold nanoparticle-based gene delivery: promises and challenges. Nanotechnology Reviews, 2014, 3, .	5.8	27
20	Enhanced bone tissue formation by alginate gelâ€assisted cell seeding in porous ceramic scaffolds and sustained release of growth factor. Journal of Biomedical Materials Research - Part A, 2012, 100A, 3408-3415.	4.0	33
21	Electrospinning of chitosan derivative nanofibers with structural stability in an aqueous environment. Physical Chemistry Chemical Physics, 2011, 13, 9969.	2.8	38
22	Fabrication and cellular compatibility of aligned chitosan–PCL fibers for nerve tissue regeneration. Carbohydrate Polymers, 2011, 85, 149-156.	10.2	219
23	Chitosan-based hydrogels for controlled, localized drug delivery. Advanced Drug Delivery Reviews, 2010, 62, 83-99.	13.7	2,026
24	Aligned chitosan-based nanofibers for enhanced myogenesis. Journal of Materials Chemistry, 2010, 20, 8904.	6.7	89
25	PEG-Mediated Synthesis of Highly Dispersive Multifunctional Superparamagnetic Nanoparticles: Their Physicochemical Properties and Function <i>In Vivo</i> . ACS Nano, 2010, 4, 2402-2410.	14.6	250
26	Chlorotoxin Labeled Magnetic Nanovectors for Targeted Gene Delivery to Glioma. ACS Nano, 2010, 4, 4587-4594.	14.6	203
27	Functionalization of iron oxide magnetic nanoparticles with targeting ligands: their physicochemical properties and <i>in vivo</i> behavior. Nanomedicine, 2010, 5, 1357-1369.	3.3	54
28	Rapid Pharmacokinetic and Biodistribution Studies Using Cholorotoxin-Conjugated Iron Oxide Nanoparticles: A Novel Non-Radioactive Method. PLoS ONE, 2010, 5, e9536.	2.5	85
29	Design and evaluation of a nanoscale differential tensile test device for nanofibers. Applied Physics Letters, 2009, 94, 103101.	3.3	9
30	PEI–PEG–Chitosanâ€Copolymerâ€Coated Iron Oxide Nanoparticles for Safe Gene Delivery: Synthesis, Complexation, and Transfection. Advanced Functional Materials, 2009, 19, 2244-2251.	14.9	359
31	Naturalâ€6ynthetic Polyblend Nanofibers for Biomedical Applications. Advanced Materials, 2009, 21, 2792-2797.	21.0	145
32	Functionalized Nanoparticles with Longâ€Term Stability in Biological Media. Small, 2009, 5, 1637-1641.	10.0	227
33	Specific Targeting of Brain Tumors with an Optical/Magnetic Resonance Imaging Nanoprobe across the Blood-Brain Barrier. Cancer Research, 2009, 69, 6200-6207.	0.9	347
34	Hydrophobically modified chitosan/gold nanoparticles for DNA delivery. Journal of Nanoparticle Research, 2008, 10, 151-162.	1.9	53
35	Carbon nanotube-hydroxyapatite nanocomposite for DNA complexation. Materials Science and Engineering C, 2008, 28, 64-69.	7.3	32
36	Controlled synthesis and structural stability of alginate-based nanofibers. Nanotechnology, 2007, 18, 455601.	2.6	126

NARAYAN BHATTARAI

#	Article	IF	CITATIONS
37	Synthesis and characterization of amine-functionalized amphiphilic block copolymers based on poly(ethylene glycol) and poly(caprolactone). Polymer International, 2007, 56, 518-524.	3.1	9
38	Stabilization of gold nanoparticles by hydrophobically-modified polycations. Journal of Biomaterials Science, Polymer Edition, 2006, 17, 579-589.	3.5	25
39	Novel block copolymer (PPDO/PLLA-b-PEG): Enhancement of DNA uptake and cell transfection. Acta Biomaterialia, 2006, 2, 207-212.	8.3	18
40	Spectroscopic identification of SAu interaction in cysteine capped gold nanoparticles. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2006, 63, 160-163.	3.9	257
41	Mechanical behaviors and characterization of electrospun polysulfone/polyurethane blend nonwovens. Macromolecular Research, 2006, 14, 331-337.	2.4	51
42	Study of electrolyte induced aggregation of gold nanoparticles capped by amino acids. Journal of Colloid and Interface Science, 2006, 299, 191-197.	9.4	98
43	Stabilization of gold nanoparticles by thiol functionalized poly(É›-Caprolactone) for the labeling of PCL biocarrier. Materials Chemistry and Physics, 2006, 98, 463-469.	4.0	21
44	Hydrophilic nanofibrous structure of polylactide; fabrication and cell affinity. Journal of Biomedical Materials Research - Part A, 2006, 78A, 247-257.	4.0	103
45	Chitosan and lactic acid-grafted chitosan nanoparticles as carriers for prolonged drug delivery. International Journal of Nanomedicine, 2006, 1, 181-187.	6.7	106
46	Electrospun chitosan-based nanofibers and their cellular compatibility. Biomaterials, 2005, 26, 6176-6184.	11.4	815
47	PEC-grafted chitosan as an injectable thermosensitive hydrogel for sustained protein release. Journal of Controlled Release, 2005, 103, 609-624.	9.9	591
48	PEC-Grafted Chitosan as an Injectable Thermoreversible Hydrogel. Macromolecular Bioscience, 2005, 5, 107-111.	4.1	145
49	Optical and MRI Multifunctional Nanoprobe for Targeting Gliomas. Nano Letters, 2005, 5, 1003-1008.	9.1	562
50	Thermal decomposition kinetics of copolymers derived fromp-dioxanone, L-lactide and poly(ethylene) Tj ETQq0 C	0 rgBT /C	veglock 10 Tf
51	Novel biodegradable electrospun membrane: scaffold for tissue engineering. Biomaterials, 2004, 25, 2595-2602.	11.4	440
52	Synthesis and hydrolytic degradation of a random copolymer derived from 1,4-dioxan-2-one and glycolide. Journal of Polymer Science, Part B: Polymer Physics, 2004, 42, 2558-2566.	2.1	16
53	Synthesis and characterization of ABA-type block copolymers of trimethylene carbonate andε-caprolactone. Polymer International, 2004, 53, 312-319.	3.1	13
54	Novel Polymeric Micelles of Amphiphilic Triblock Copolymer Poly (p-Dioxanone-co-L-Lactide)-block-Poly (ethylene glycol). Pharmaceutical Research, 2003, 20, 2021-2027.	3.5	15

NARAYAN BHATTARAI

#	Article	IF	CITATIONS
55	Electrospun nanofibrous polyurethane membrane as wound dressing. Journal of Biomedical Materials Research Part B, 2003, 67B, 675-679.	3.1	737
56	Nonisothermal crystallization and melting behavior of the copolymer derived from p-dioxanone and poly(ethylene glycol). European Polymer Journal, 2003, 39, 1365-1375.	5.4	37
57	Aqueous solution properties of amphiphilic triblock copolymer poly(p-dioxanone-co-l-lactide)-block-poly(ethylene glycol). European Polymer Journal, 2003, 39, 1603-1608.	5.4	29
58	Biodegradable electrospun mat: Novel block copolymer of poly (p-dioxanone-co-L-lactide)-block-poly(ethylene glycol). Journal of Polymer Science, Part B: Polymer Physics, 2003, 41, 1955-1964.	2.1	30
59	Synthesis and characterization of ABA type tri-block copolymers derived fromp-dioxanone,L-lactide and poly(ethylene glycol). Polymer International, 2003, 52, 6-14.	3.1	36

60 Thermogravimetric study of copolymers derived from p-dioxanone, l-lactide and poly (ethylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 54