Ian David Hickson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2674063/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature, 2005, 434, 917-921.	27.8	5,595
2	Identification and Characterization of a Novel and Specific Inhibitor of the Ataxia-Telangiectasia Mutated Kinase ATM. Cancer Research, 2004, 64, 9152-9159.	0.9	1,089
3	The Bloom's syndrome helicase suppresses crossing over during homologous recombination. Nature, 2003, 426, 870-874.	27.8	993
4	RecQ helicases: caretakers of the genome. Nature Reviews Cancer, 2003, 3, 169-178.	28.4	634
5	53BP1 nuclear bodies form around DNA lesions generated by mitotic transmission of chromosomes under replication stress. Nature Cell Biology, 2011, 13, 243-253.	10.3	584
6	The Bloom's and Werner's syndrome proteins are DNA structure-specific helicases. Nucleic Acids Research, 2001, 29, 2843-2849.	14.5	518
7	Replication stress induces sister-chromatid bridging at fragile site loci in mitosis. Nature Cell Biology, 2009, 11, 753-760.	10.3	517
8	Cellular Responses to DNA Damage. Annual Review of Pharmacology and Toxicology, 2001, 41, 367-401.	9.4	489
9	The Bloom's Syndrome Helicase Unwinds G4 DNA. Journal of Biological Chemistry, 1998, 273, 27587-27592.	3.4	472
10	Replication stress activates DNA repair synthesis in mitosis. Nature, 2015, 528, 286-290.	27.8	463
11	RecQ helicases: multifunctional genome caretakers. Nature Reviews Cancer, 2009, 9, 644-654.	28.4	423
12	Sgs1: A eukaryotic homolog of E. coil RecQ that interacts with topoisomerase II in vivo and is required for faithful chromosome segregation. Cell, 1995, 81, 253-260.	28.9	416
13	Werner's syndrome protein (WRN) migrates Holliday junctions and coâ€localizes with RPA upon replication arrest. EMBO Reports, 2000, 1, 80-84.	4.5	378
14	BLM is required for faithful chromosome segregation and its localization defines a class of ultrafine anaphase bridges. EMBO Journal, 2007, 26, 3397-3409.	7.8	369
15	<i>SGS1</i> , a Homologue of the Bloom's and Werner's Syndrome Genes, Is Required for Maintenance of Genome Stability in <i>Saccharomyces cerevisiae</i> . Genetics, 1996, 144, 935-945.	2.9	368
16	The Bloom's Syndrome Gene Product Is a 3′-5′ DNA Helicase. Journal of Biological Chemistry, 1997, 272, 30611-30614.	3.4	352
17	RecQ helicases: suppressors of tumorigenesis and premature aging. Biochemical Journal, 2003, 374, 577-606.	3.7	352
18	The structure-specific endonuclease Mus81 contributes to replication restart by generating double-strand DNA breaks. Nature Structural and Molecular Biology, 2007, 14, 1096-1104.	8.2	342

2

#	Article	IF	CITATIONS
19	Telomere-binding Protein TRF2 Binds to and Stimulates the Werner and Bloom Syndrome Helicases. Journal of Biological Chemistry, 2002, 277, 41110-41119.	3.4	334
20	RAD52 Facilitates Mitotic DNA Synthesis Following Replication Stress. Molecular Cell, 2016, 64, 1117-1126.	9.7	310
21	Isolation of cDNA clones encoding a human apurini/apyrimidinic endonuclease that corects DNA repair and mutagenisis defects inE.coli xth(exonuclease III) mutants. Nucleic Acids Research, 1991, 19, 5519-5523.	14.5	299
22	The Bloom's Syndrome Gene Product Interacts with Topoisomerase III. Journal of Biological Chemistry, 2000, 275, 9636-9644.	3.4	294
23	Replication Protein A Physically Interacts with the Bloom's Syndrome Protein and Stimulates Its Helicase Activity. Journal of Biological Chemistry, 2000, 275, 23500-23508.	3.4	274
24	Potential Role for the BLM Helicase in Recombinational Repair via a Conserved Interaction with RAD51. Journal of Biological Chemistry, 2001, 276, 19375-19381.	3.4	267
25	BLAP75/RMI1 promotes the BLM-dependent dissolution of homologous recombination intermediates. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 4068-4073.	7.1	244
26	Isolation of cDNA clones encoding the \hat{I}^2 isozyme of human DNA topoisomerase II and localisation of the gene to chromosome 3p24. Nucleic Acids Research, 1992, 20, 5587-5592.	14.5	243
27	MUS81 promotes common fragile site expression. Nature Cell Biology, 2013, 15, 1001-1007.	10.3	234
28	Role for BLM in replication-fork restart and suppression of origin firing after replicative stress. Nature Structural and Molecular Biology, 2007, 14, 677-679.	8.2	208
29	FANCJ Is a Structure-specific DNA Helicase Associated with the Maintenance of Genomic G/C Tracts. Journal of Biological Chemistry, 2008, 283, 36132-36139.	3.4	207
30	Isolation of a small molecule inhibitor of DNA base excision repair. Nucleic Acids Research, 2005, 33, 4711-4724.	14.5	206
31	A role for the human DNA repair enzyme HAP1 in cellular protection against DNA damaging agents and hypoxic stress. Nucleic Acids Research, 1994, 22, 4884-4889.	14.5	205
32	Mobile D-loops are a preferred substrate for the Bloom's syndrome helicase. Nucleic Acids Research, 2006, 34, 2269-2279.	14.5	202
33	Defending genome integrity during DNA replication: a proposed role for RecQ family helicases. BioEssays, 1999, 21, 286-294.	2.5	201
34	Structure and function of apurinic/apyrimidinic endonucleases. BioEssays, 1995, 17, 713-719.	2.5	199
35	Phosphorylation of the Bloom's Syndrome Helicase and Its Role in Recovery from S-Phase Arrest. Molecular and Cellular Biology, 2004, 24, 1279-1291.	2.3	193
36	The Bloom's Syndrome Helicase Can Promote the Regression of a Model Replication Fork. Journal of Biological Chemistry, 2006, 281, 22839-22846.	3.4	192

#	Article	IF	CITATIONS
37	RecQ family helicases: roles in cancer and aging. Current Opinion in Genetics and Development, 2000, 10, 32-38.	3.3	186
38	SGS1 is required for telomere elongation in the absence of telomerase. Current Biology, 2001, 11, 125-129.	3.9	178
39	RMI, a new OB-fold complex essential for Bloom syndrome protein to maintain genome stability. Genes and Development, 2008, 22, 2843-2855.	5.9	175
40	Rmi1 stimulates decatenation of double Holliday junctions during dissolution by Sgs1–Top3. Nature Structural and Molecular Biology, 2010, 17, 1377-1382.	8.2	175
41	RecQ helicases: guardian angels of the DNA replication fork. Chromosoma, 2008, 117, 219-233.	2.2	167
42	Physiological regulation of eukaryotic topoisomerase II. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1998, 1400, 121-137.	2.4	157
43	POT1 Stimulates RecQ Helicases WRN and BLM to Unwind Telomeric DNA Substrates. Journal of Biological Chemistry, 2005, 280, 32069-32080.	3.4	157
44	The Dissolution of Double Holliday Junctions. Cold Spring Harbor Perspectives in Biology, 2014, 6, a016477-a016477.	5.5	157
45	DNA Helicases Required for Homologous Recombination and Repair of Damaged Replication Forks. Annual Review of Genetics, 2006, 40, 279-306.	7.6	155
46	The HRDC domain of BLM is required for the dissolution of double Holliday junctions. EMBO Journal, 2005, 24, 2679-2687.	7.8	150
47	A short G1 phase imposes constitutive replication stress and fork remodelling in mouse embryonic stem cells. Nature Communications, 2016, 7, 10660.	12.8	149
48	RecQ Helicases: Conserved Guardians of Genomic Integrity. Advances in Experimental Medicine and Biology, 2013, 767, 161-184.	1.6	143
49	Cell Cycle–coupled Relocation of Types I and II Topoisomerases and Modulation of Catalytic Enzyme Activities. Journal of Cell Biology, 1997, 136, 775-788.	5.2	138
50	The Bloom's syndrome helicase promotes the annealing of complementary single-stranded DNA. Nucleic Acids Research, 2005, 33, 3932-3941.	14.5	137
51	A FancD2-Monoubiquitin Fusion Reveals Hidden Functions of Fanconi Anemia Core Complex in DNA Repair. Molecular Cell, 2005, 19, 841-847.	9.7	134
52	Oligomeric ring structure of the Bloom's syndrome helicase. Current Biology, 1999, 9, 597-600.	3.9	129
53	A Small Molecule Inhibitor of the BLM Helicase Modulates Chromosome Stability in Human Cells. Chemistry and Biology, 2013, 20, 55-62.	6.0	128
54	The Human RecQ Helicases, BLM and RECQ1, Display Distinct DNA Substrate Specificities. Journal of Biological Chemistry, 2008, 283, 17766-17776.	3.4	127

#	Article	IF	CITATIONS
55	How unfinished business from S-phase affects mitosis and beyond. EMBO Journal, 2013, 32, 2661-2671.	7.8	125
56	Chromosome instability syndromes. Nature Reviews Disease Primers, 2019, 5, 64.	30.5	123
57	Isolation of cDNA clones encoding an enzyme from bovine cells that repairs oxidative DNA damagein vitro: homology with bacterial repair enzymes. Nucleic Acids Research, 1991, 19, 1087-1092.	14.5	121
58	Colocalization, Physical, and Functional Interaction between Werner and Bloom Syndrome Proteins. Journal of Biological Chemistry, 2002, 277, 22035-22044.	3.4	119
59	A Small Interfering RNA Screen of Genes Involved in DNA Repair Identifies Tumor-Specific Radiosensitization by POLQ Knockdown. Cancer Research, 2010, 70, 2984-2993.	0.9	116
60	Identification of critical active-site residues in the multifunctional human DNA repair enzyme HAP1. Nature Structural Biology, 1995, 2, 561-568.	9.7	113
61	Site-directed mutagenesis of the human DNA repair enzyme HAP1: identification of residues important for AP endonuclease and RNase H activity. Nucleic Acids Research, 1995, 23, 1544-1550.	14.5	110
62	The origins and processing of ultra fine anaphase DNA bridges. Current Opinion in Genetics and Development, 2014, 26, 1-5.	3.3	109
63	Unwinding of a DNA Triple Helix by the Werner and Bloom Syndrome Helicases. Journal of Biological Chemistry, 2001, 276, 3024-3030.	3.4	108
64	RecQ helicases: multiple roles in genome maintenance. Trends in Cell Biology, 2003, 13, 493-501.	7.9	108
65	Regulation of gene expression by the BLM helicase correlates with the presence of G-quadruplex DNA motifs. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9905-9910.	7.1	108
66	The Processing of Holliday Junctions by BLM and WRN Helicases Is Regulated by p53. Journal of Biological Chemistry, 2002, 277, 31980-31987.	3.4	107
67	The RecQ helicase–topoisomerase Ill–Rmi1 complex: a DNA structure-specific â€~dissolvasome'?. Trends in Biochemical Sciences, 2007, 32, 538-546.	n 7.5	105
68	Nuclear expression of human apurinic/apyrimidinic endonuclease (HAP1/Ref-1) in head-and-neck cancer is associated with resistance to chemoradiotherapy and poor outcome. International Journal of Radiation Oncology Biology Physics, 2001, 50, 27-36.	0.8	104
69	Temozolomide Pharmacodynamics in Patients with Metastatic Melanoma: DNA Damage and Activity of Repair Enzymes O6-Alkylguanine Alkyltransferase and Poly(ADP-Ribose) Polymerase-1. Clinical Cancer Research, 2005, 11, 3402-3409.	7.0	103
70	Caretaker tumour suppressor genes that defend genome integrity. Trends in Molecular Medicine, 2002, 8, 179-186.	6.7	101
71	Inhibition of the Bloom's and Werner's Syndrome Helicases by G-Quadruplex Interacting Ligands. Biochemistry, 2001, 40, 15194-15202.	2.5	100
72	The E. coli uvrD gene product is DNA helicase II. Molecular Genetics and Genomics, 1983, 190, 265-270.	2.4	97

5

#	Article	IF	CITATIONS
73	Increased error-prone non homologous DNA end-joining – a proposed mechanism of chromosomal instability in Bloom's syndrome. Oncogene, 2002, 21, 2525-2533.	5.9	97
74	DNA repair inhibition: a selective tumour targeting strategy. Trends in Molecular Medicine, 2005, 11, 503-511.	6.7	96
75	The RAD51 Family Member, RAD51L3, Is a DNA-stimulated ATPase That Forms a Complex with XRCC2. Journal of Biological Chemistry, 2000, 275, 29100-29106.	3.4	95
76	PICH promotes sister chromatid disjunction and co-operates with topoisomerase II in mitosis. Nature Communications, 2015, 6, 8962.	12.8	94
77	Tumour predisposition and cancer syndromes as models to study gene–environment interactions. Nature Reviews Cancer, 2020, 20, 533-549.	28.4	93
78	Interaction between the helicases genetically linked to Fanconi anemia group J and Bloom's syndrome. EMBO Journal, 2011, 30, 692-705.	7.8	92
79	New insights into the formation and resolution of ultra-fine anaphase bridges. Seminars in Cell and Developmental Biology, 2011, 22, 906-912.	5.0	91
80	FBH1 Catalyzes Regression of Stalled Replication Forks. Cell Reports, 2015, 10, 1749-1757.	6.4	90
81	Shu Proteins Promote the Formation of Homologous Recombination Intermediates That Are Processed by Sgs1-Rmi1-Top3. Molecular Biology of the Cell, 2007, 18, 4062-4073.	2.1	88
82	Complete nucleotide sequence of theEscherichia coli ptrgene encoding Protease III. Nucleic Acids Research, 1986, 14, 7695-7703.	14.5	87
83	Complete nucleotide sequence of theEscherichia coli recBgene. Nucleic Acids Research, 1986, 14, 8573-8582.	14.5	86
84	Phosphorylation of BLM, Dissociation from Topoisomerase IIIα, and Colocalization with γ-H2AX after Topoisomerase I-Induced Replication Damage. Molecular and Cellular Biology, 2005, 25, 8925-8937.	2.3	86
85	PICH: A DNA Translocase Specially Adapted for Processing Anaphase Bridge DNA. Molecular Cell, 2013, 51, 691-701.	9.7	86
86	Stimulation of Flap Endonuclease-1 by the Bloom's Syndrome Protein. Journal of Biological Chemistry, 2004, 279, 9847-9856.	3.4	85
87	p53 Regulates the Minimal Promoter of the Human Topoisomerase IIÂ Gene. Nucleic Acids Research, 1996, 24, 4464-4470.	14.5	83
88	Mechanistic insight into the interaction of BLM helicase with intra-strand G-quadruplex structures. Nature Communications, 2014, 5, 5556.	12.8	83
89	Efficiency of Incision of an AP Site within Clustered DNA Damage by the Major Human AP Endonuclease. Biochemistry, 2002, 41, 634-642.	2.5	82
90	Endogenous γ-H2AX-ATM-Chk2 Checkpoint Activation in Bloom's Syndrome Helicase–Deficient Cells Is Related to DNA Replication Arrested Forks. Molecular Cancer Research, 2007, 5, 713-724.	3.4	81

#	Article	IF	CITATIONS
91	FBH1 co-operates with MUS81 in inducing DNA double-strand breaks and cell death following replication stress. Nature Communications, 2013, 4, 1423.	12.8	81
92	RECQ5 Helicase Cooperates with MUS81 Endonuclease in Processing Stalled Replication Forks at Common Fragile Sites during Mitosis. Molecular Cell, 2017, 66, 658-671.e8.	9.7	81
93	Regulation of the Human Topoisomerase IIα Gene Promoter in Confluence-arrested Cells. Journal of Biological Chemistry, 1996, 271, 16741-16747.	3.4	80
94	Crystal structure of the Bloom's syndrome helicase indicates a role for the HRDC domain in conformational changes. Nucleic Acids Research, 2015, 43, 5221-5235.	14.5	74
95	High-resolution mapping of mitotic DNA synthesis regions and common fragile sites in the human genome through direct sequencing. Cell Research, 2020, 30, 997-1008.	12.0	74
96	Functional Interaction between the Bloom's Syndrome Helicase and the RAD51 Paralog, RAD51L3 (RAD51D). Journal of Biological Chemistry, 2003, 278, 48357-48366.	3.4	73
97	A Role for BLM in Double-Strand Break Repair Pathway Choice: Prevention of CtIP/Mre11-Mediated Alternative Nonhomologous End-Joining. Cell Reports, 2013, 5, 21-28.	6.4	73
98	Human cancer cells utilize mitotic DNA synthesis to resist replication stress at telomeres regardless of their telomere maintenance mechanism. Oncotarget, 2018, 9, 15836-15846.	1.8	73
99	FBH1 Helicase Disrupts RAD51 Filaments in Vitro and Modulates Homologous Recombination in Mammalian Cells. Journal of Biological Chemistry, 2013, 288, 34168-34180.	3.4	72
100	Structural and mechanistic insight into Holliday-junction dissolution by Topoisomerase IIIα and RMI1. Nature Structural and Molecular Biology, 2014, 21, 261-268.	8.2	71
101	Cell Cycle Phase-specific Phosphorylation of Human Topoisomerase Ilα. Journal of Biological Chemistry, 1995, 270, 28357-28363.	3.4	70
102	Complete nucleotide sequence of theEscherichia coti recCgene and of thethyA-recCintergenk region. Nucleic Acids Research, 1986, 14, 4437-4451.	14.5	68
103	The mismatch DNA repair heterodimer, hMSH2/6, regulates BLM helicase. Oncogene, 2004, 23, 3749-3756.	5.9	66
104	Genetic Disorders Associated with Cancer Predisposition and Genomic Instability. Progress in Molecular Biology and Translational Science, 1999, 63, 189-221.	1.9	65
105	Topoisomerase III Acts Upstream of Rad53p in the S-Phase DNA Damage Checkpoint. Molecular and Cellular Biology, 2001, 21, 7150-7162.	2.3	65
106	Mutations in TOP3A Cause a Bloom Syndrome-like Disorder. American Journal of Human Genetics, 2018, 103, 221-231.	6.2	65
107	On the origins of ultra-fine anaphase bridges. Cell Cycle, 2009, 8, 3065-3066.	2.6	63
108	Human Topoisomerase IIIα Is a Single-stranded DNA Decatenase That Is Stimulated by BLM and RMI1. Journal of Biological Chemistry, 2010, 285, 21426-21436.	3.4	62

#	Article	IF	CITATIONS
109	The Bloom's syndrome helicase stimulates the activity of human topoisomerase IIIalpha. Nucleic Acids Research, 2002, 30, 4823-4829.	14.5	61
110	Pathways for maintenance of telomeres and common fragile sites during DNA replication stress. Open Biology, 2018, 8, 180018.	3.6	61
111	RTEL1 suppresses G-quadruplex-associated R-loops at difficult-to-replicate loci in the human genome. Nature Structural and Molecular Biology, 2020, 27, 424-437.	8.2	60
112	FBH1 influences DNA replication fork stability and homologous recombination through ubiquitylation of RAD51. Nature Communications, 2015, 6, 5931.	12.8	59
113	Human Topoisomerase IIalpha is Phosphorylated in a Cell-Cycle Phase-Dependent Manner by a Proline-Directed Kinase. FEBS Journal, 1995, 231, 491-497.	0.2	59
114	Structure of the human DNA repair geneHAP1and its localisation to chromosome 14q 11.2–12. Nucleic Acids Research, 1992, 20, 4417-4421.	14.5	58
115	RecQ helicases: Multiple structures for multiple functions?. HFSP Journal, 2009, 3, 153-164.	2.5	58
116	Pathways for Holliday Junction Processing during Homologous Recombination in <i>Saccharomyces cerevisiae</i> . Molecular and Cellular Biology, 2011, 31, 1921-1933.	2.3	58
117	Esc2 and Sgs1 Act in Functionally Distinct Branches of the Homologous Recombination Repair Pathway in <i>Saccharomyces cerevisiae</i> . Molecular Biology of the Cell, 2009, 20, 1683-1694.	2.1	57
118	TRAIP drives replisome disassembly and mitotic DNA repair synthesis at sites of incomplete DNA replication. ELife, 2019, 8, .	6.0	57
119	Identification of the Escherichia coli recB and recC gene products. Nature, 1981, 294, 578-580.	27.8	55
120	Premature aging in RecQ helicase-deficient human syndromes. International Journal of Biochemistry and Cell Biology, 2002, 34, 1496-1501.	2.8	54
121	Phosphorylation of Serine 1106 in the Catalytic Domain of Topoisomerase IIα Regulates Enzymatic Activity and Drug Sensitivity. Journal of Biological Chemistry, 2003, 278, 12696-12702.	3.4	54
122	Yeast as a model system to study RecQ helicase function. DNA Repair, 2010, 9, 303-314.	2.8	51
123	Holliday junction-containing DNA structures persist in cells lacking Sgs1 or Top3 following exposure to DNA damage. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4944-4949.	7.1	51
124	Defending genome integrity during S-phase: putative roles for RecQ helicases and topoisomerase III. DNA Repair, 2002, 1, 175-207.	2.8	50
125	Inactivation of homologous recombination suppresses defects in topoisomerase III-deficient mutants. DNA Repair, 2002, 1, 463-482.	2.8	49
126	Human Apurinic/Apyrimidinic Endonuclease (Ape1) and Its N-terminal Truncated Form (AN34) Are Involved in DNA Fragmentation during Apoptosis. Journal of Biological Chemistry, 2003, 278, 37768-37776.	3.4	48

#	Article	IF	CITATIONS
127	The Bloom's Syndrome Helicase Interacts Directly with the Human DNA Mismatch Repair Protein hMSH6. Biological Chemistry, 2003, 384, 1155-64.	2.5	47
128	Processing of homologous recombination repair intermediates by the Sgs1-Top3-Rmi1 and Mus81-Mms4 complexes. Cell Cycle, 2011, 10, 3078-3085.	2.6	47
129	Acute inactivation of the replicative helicase in human cells triggers MCM8–9-dependent DNA synthesis. Genes and Development, 2017, 31, 816-829.	5.9	47
130	Nuclear localization of human AP endonuclease 1 (HAP1/Ref-1) associates with prognosis in early operable non-small cell lung cancer (NSCLC). , 1999, 189, 351-357.		46
131	Physical and Functional Interaction between the Bloom's Syndrome Gene Product and the Largest Subunit of Chromatin Assembly Factor 1. Molecular and Cellular Biology, 2004, 24, 4710-4719.	2.3	44
132	Overexpression of DNA polymerase results in an increased rate of frameshift mutations during base excision repair. Mutagenesis, 2007, 22, 183-188.	2.6	43
133	The RIF1-PP1 Axis Controls Abscission Timing in Human Cells. Current Biology, 2019, 29, 1232-1242.e5.	3.9	42
134	Reduced topoisomerase II and elevated α class glutathione S-transferase expression in a multidrug resistant CHO cell line highly cross-resistant to mitomycin C. Biochemical Pharmacology, 1992, 43, 685-693.	4.4	41
135	Human DNA topoisomerases $Il\hat{I}_{\pm}$ and $Il\hat{I}^2$ can functionally substitute for yeastTOP2 in chromosome segregation and recombination. Molecular Genetics and Genomics, 1996, 252, 79-86.	2.4	41
136	Anaphase: a fortune-teller of genomic instability. Current Opinion in Cell Biology, 2018, 52, 112-119.	5.4	41
137	The many lives of type IA topoisomerases. Journal of Biological Chemistry, 2020, 295, 7138-7153.	3.4	41
138	Genome stability: Failure to unwind causes cancer. Current Biology, 1996, 6, 265-267.	3.9	40
139	Top3 Processes Recombination Intermediates and Modulates Checkpoint Activity after DNA Damage. Molecular Biology of the Cell, 2006, 17, 4473-4483.	2.1	38
140	Structure-specific endonucleases: guardians of fragile site stability. Trends in Cell Biology, 2014, 24, 321-327.	7.9	38
141	Reconstitution of anaphase DNA bridge recognition and disjunction. Nature Structural and Molecular Biology, 2018, 25, 868-876.	8.2	38
142	Asparagine 212 is essential for abasic site recognition by the human DNA repair endonuclease HAP1. Nucleic Acids Research, 1996, 24, 4217-4221.	14.5	37
143	Overexpression of DNA ligase III in mitochondria protects cells against oxidative stress and improves mitochondrial DNA base excision repair. DNA Repair, 2014, 16, 44-53.	2.8	37
144	The Escherichia coli Tus–Ter replication fork barrier causes site-specific DNA replication perturbation in yeast. Nature Communications, 2014, 5, 3574.	12.8	37

#	Article	IF	CITATIONS
145	Inducible Degradation of the Human SMC5/6 Complex Reveals an Essential Role Only during Interphase. Cell Reports, 2020, 31, 107533.	6.4	37
146	A role for the fission yeast Rqh1 helicase in chromosome segregation. Journal of Cell Science, 2005, 118, 5777-5784.	2.0	36
147	MOLECULAR BIOLOGY: Enhanced: DNA Ends RecQ-uire Attention. Science, 2001, 292, 229-230.	12.6	35
148	RecQ helicases and cellular responses to DNA damage. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2002, 509, 35-47.	1.0	34
149	Analysis of the DNA Unwinding Activity of RecQ Family Helicases. Methods in Enzymology, 2006, 409, 86-100.	1.0	34
150	Loss of PICH Results in Chromosomal Instability, p53 Activation, and Embryonic Lethality. Cell Reports, 2018, 24, 3274-3284.	6.4	34
151	Overproduction of topoisomerase II in an ataxia telangiectasia fibroblast cell line: comparison with a topoisomerase II-overproducing hamster cell mutant. Nucleic Acids Research, 1989, 17, 1337-1351.	14.5	33
152	Constitutive DNA damage is linked to DNA replication abnormalities in Bloom's syndrome cells. Oncogene, 2003, 22, 8749-8757.	5.9	33
153	Casein Kinase II Stabilizes the Activity of Human Topoisomerase IIα in a Phosphorylation-independent Manner. Journal of Biological Chemistry, 1998, 273, 3635-3642.	3.4	32
154	Genomic instability and cancer: lessons from analysis of Bloom's syndrome. Biochemical Society Transactions, 2009, 37, 553-559.	3.4	31
155	Proteome-wide analysis of SUMO2 targets in response to pathological DNA replication stress in human cells. DNA Repair, 2015, 25, 84-96.	2.8	30
156	Nonlinear mechanics of human mitotic chromosomes. Nature, 2022, 605, 545-550.	27.8	30
157	Complete nucleotide sequence of theEscherichia coli argAgene. Nucleic Acids Research, 1987, 15, 10586-10586.	14.5	29
158	PICH and TOP3A cooperate to induce positive DNA supercoiling. Nature Structural and Molecular Biology, 2019, 26, 267-274.	8.2	29
159	Genetic recombination: Helicases and topoisomerases link up. Current Biology, 1999, 9, R518-R520.	3.9	28
160	Synthesis and SAR studies of 5-(pyridin-4-yl)-1,3,4-thiadiazol-2-amine derivatives as potent inhibitors of Bloom helicase. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 5660-5666.	2.2	28
161	The "enemies within": regions of the genome that are inherently difficult to replicate. F1000Research, 2017, 6, 666.	1.6	28
162	The Bloom's syndrome helicase (BLM) interacts physically and functionally with p12, the smallest subunit of human DNA polymerase l´. Nucleic Acids Research, 2008, 36, 5166-5179.	14.5	26

#	Article	IF	CITATIONS
163	Folate stress induces SLX1- and RAD51-dependent mitotic DNA synthesis at the fragile X locus in human cells. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 16527-16536.	7.1	26
164	Interaction of RECQ4 and MCM10 is important for efficient DNA replication origin firing in human cells. Oncotarget, 2015, 6, 40464-40479.	1.8	26
165	PICH promotes mitotic chromosome segregation: Identification of a novel role in rDNA disjunction. Cell Cycle, 2016, 15, 2704-2711.	2.6	25
166	Genetic analysis of mitomycin C-sensitive mutants of a Chinese hamster ovary cell line. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1986, 163, 201-208.	1.0	24
167	Repair of cisplatin-DNA adducts by protein extracts from human ovarian carcinoma. International Journal of Cancer, 1994, 59, 388-393.	5.1	24
168	Folate deficiency drives mitotic missegregation of the human <i>FRAXA</i> locus. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 13003-13008.	7.1	23
169	DNA replication stress and its impact on chromosome segregation and tumorigenesis. Seminars in Cancer Biology, 2019, 55, 61-69.	9.6	23
170	Keynote address: Mechanisms of cellular resistance to cytotoxic drugs and X-irradiation. International Journal of Radiation Oncology Biology Physics, 1991, 20, 197-202.	0.8	22
171	The response of mammalian cells to UV-light reveals Rad54-dependent and independent pathways of homologous recombination. DNA Repair, 2011, 10, 1095-1105.	2.8	22
172	Human Topoisomerase IIα is Phosphorylated in a Cellâ€Cycle Phaseâ€Dependent Manner by a Prolineâ€Directed Kinase. FEBS Journal, 1995, 231, 491-497.	0.2	21
173	Inducing and Detecting Mitotic DNA Synthesis at Difficult-to-Replicate Loci. Methods in Enzymology, 2018, 601, 45-58.	1.0	21
174	Altered Expression and Activity of Topoisomerases During All-Trans Retinoic Acid-Induced Differentiation of HL-60 Cells. Blood, 1998, 92, 2863-2870.	1.4	20
175	Requirement for Schizosaccharomyces pombe Top3 in the maintenance of chromosome integrity. Journal of Cell Science, 2004, 117, 4769-4778.	2.0	20
176	<i>Tus-Ter</i> as a tool to study site-specific DNA replication perturbation in eukaryotes. Cell Cycle, 2014, 13, 2994-2998.	2.6	20
177	Stalled replication forks generate a distinct mutational signature in yeast. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 9665-9670.	7.1	20
178	Molecular amplification and purification of theE. colt recCgene product. Nucleic Acids Research, 1984, 12, 3807-3819.	14.5	19
179	Isolation and partial characterisation of a mammalian cell mutant hypersensitive to topoisomerase II inhibitors and X-rays. Mutation Research DNA Repair, 1990, 235, 111-118.	3.7	18
180	Developing T lymphocytes are uniquely sensitive to a lack of topoisomerase III alpha. European Journal of Immunology, 2010, 40, 2379-2384.	2.9	18

#	Article	IF	CITATIONS
181	Defective repair of DNA single- and double-strand breaks in the bleomycin- and X-ray-sensitive Chinese hamster ovary cell mutant, BLM-2. Mutation Research DNA Repair, 1989, 217, 93-100.	3.7	17
182	Dissolution of Double Holliday Junctions by the Concerted Action of BLM and Topoisomerase IIIα. Methods in Molecular Biology, 2009, 582, 91-102.	0.9	17
183	Relationship between expression of topoisomerase II isoforms and chemosensitivity in choroidal melanoma. Journal of Pathology, 2000, 192, 174-181.	4.5	16
184	Detection of Ultrafine Anaphase Bridges. Methods in Molecular Biology, 2018, 1672, 495-508.	0.9	16
185	Molecular cloning and amplification of the gene for thymidylate synthetase of E. coli. Gene, 1982, 18, 257-260.	2.2	15
186	Isolation of alkylating agent-sensitive Chinese hamster ovary cell lines. Carcinogenesis, 1987, 8, 601-605.	2.8	15
187	Attenuation of drug-stimulated topoisomerase Il–DNA cleavable complex formation in wild-type HL-60 cells treated with an intracellular calcium buffer is correlated with decreased cytotoxicity and site-specific hypophosphorylation of topoisomerase Ilα. Biochemical Journal, 1998, 336, 727-733.	3.7	15
188	Potential biomarkers of DNA replication stress in cancer. Oncotarget, 2017, 8, 36996-37008.	1.8	15
189	LIFESTAT – Living with statins: An interdisciplinary project on the use of statins as a cholesterol-lowering treatment and for cardiovascular risk reduction. Scandinavian Journal of Public Health, 2016, 44, 534-539.	2.3	14
190	Simvastatin improves mitochondrial respiration in peripheral blood cells. Scientific Reports, 2020, 10, 17012.	3.3	14
191	What role do glutathione S-transferases play in the cellular response to ionizing radiation?. International Journal of Radiation Oncology Biology Physics, 1992, 22, 759-763.	0.8	13
192	Multiple mechanisms of resistance in a series of human testicular teratoma cell lines selected for increasing resistance to etoposide. International Journal of Cancer, 1994, 57, 259-267.	5.1	13
193	Knotty Problems during Mitosis: Mechanistic Insight into the Processing of Ultrafine DNA Bridges in Anaphase. Cold Spring Harbor Symposia on Quantitative Biology, 2017, 82, 187-195.	1.1	13
194	Regulation of ETAA1-mediated ATR activation couples DNA replication fidelity and genome stability. Journal of Cell Biology, 2019, 218, 3943-3953.	5.2	13
195	A novel TPR–BEN domain interaction mediates PICH–BEND3 association. Nucleic Acids Research, 2017, 45, 11413-11424.	14.5	12
196	Replication Stress Induces ATR/CHK1-Dependent Nonrandom Segregation of Damaged Chromosomes. Molecular Cell, 2020, 78, 714-724.e5.	9.7	12
197	FEN1 Blockade for Platinum Chemo-Sensitization and Synthetic Lethality in Epithelial Ovarian Cancers. Cancers, 2021, 13, 1866.	3.7	12
198	Response to epirubicin in patients with superficial bladder cancer and expression of the tanging 1006 , 65, 62,66		11

#	Article	IF	CITATIONS
199	A temperature sensitive RecA protein of Escherichia coli. Molecular Genetics and Genomics, 1981, 184, 68-72.	2.4	10
200	Regulation of SUMO2 Target Proteins by the Proteasome in Human Cells Exposed to Replication Stress. Journal of Proteome Research, 2015, 14, 1687-1699.	3.7	10
201	Altered Drug Interaction and Regulation of Topoisomerase IIβ: Potential Mechanisms Governing Sensitivity of HL-60 Cells to Amsacrine and Etoposide. Molecular Pharmacology, 1999, 56, 1340-1345.	2.3	10
202	The ZGRF1 Helicase Promotes Recombinational Repair of Replication-Blocking DNA Damage in Human Cells. Cell Reports, 2020, 32, 107849.	6.4	9
203	An Alkynylpyrimidine-Based Covalent Inhibitor That Targets a Unique Cysteine in NF-κB-Inducing Kinase. Journal of Medicinal Chemistry, 2021, 64, 10001-10018.	6.4	9
204	Duplex DNA and BLM regulate gate opening by the human TopoIIIα-RMI1-RMI2 complex. Nature Communications, 2022, 13, 584.	12.8	8
205	PICH Supports Embryonic Hematopoiesis by Suppressing a cGASâ€STINGâ€Mediated Interferon Response. Advanced Science, 2022, 9, e2103837.	11.2	8
206	A Molecular Toolbox to Engineer Site-Specific DNA Replication Perturbation. Methods in Molecular Biology, 2018, 1672, 295-309.	0.9	7
207	Acute MUS81 depletion leads to replication fork slowing and a constitutive DNA damage response. Oncotarget, 2015, 6, 37638-37646.	1.8	7
208	Fanconi anaemia proteins are associated with sister chromatid bridging in mitosis. International Journal of Hematology, 2011, 93, 440-445.	1.6	6
209	The Detection and Analysis of Chromosome Fragile Sites. Methods in Molecular Biology, 2018, 1672, 471-482.	0.9	6
210	Esc2 promotes telomere stability in response to DNA replication stress. Nucleic Acids Research, 2019, 47, 4597-4611.	14.5	6
211	BLM and RMI1 Alleviate RPA Inhibition of TopoIIIα Decatenase Activity. PLoS ONE, 2012, 7, e41208.	2.5	6
212	Construction of recombinant λ phages that carry the E. coli recB and recC genes. Molecular Genetics and Genomics, 1982, 185, 148-151.	2.4	5
213	Phorbol ester-induced down-regulation of topoisomerase Ilα mRNA in a human erythroleukemia cell line. Biochemical Pharmacology, 1996, 52, 1065-1072.	4.4	5
214	Biochemical and Mass Spectrometry-Based Approaches to Profile SUMOylation in Human Cells. Methods in Molecular Biology, 2017, 1491, 131-144.	0.9	5
215	The prevention and resolution of DNA replication $\hat{a} \in \hat{a}$ transcription conflicts in eukaryotic cells. Genome Instability & Disease, 2020, 1, 114-128.	1.1	5
216	Characterization of the NTPR and BD1 interacting domains of the human PICH–BEND3 complex. Acta Crystallographica Section F, Structural Biology Communications, 2016, 72, 646-651.	0.8	5

#	Article	IF	CITATIONS
217	Bleomycin and X-ray-hypersensitive Chinese hamster ovary cell mutants: Genetic analysis and cross-resistance to neocarzinostatin. Mutation Research - DNA Repair Reports, 1988, 193, 157-165.	1.8	4
218	A Novel Antirecombinase Gains PARIty. Molecular Cell, 2012, 45, 6-7.	9.7	4
219	Studies on the molecular pharmacology of GR63178A. Biochemical Pharmacology, 1992, 44, 433-439.	4.4	1
220	Altered Expression and Activity of Topoisomerases During All-Trans Retinoic Acid-Induced Differentiation of HL-60 Cells. Blood, 1998, 92, 2863-2870.	1.4	1
221	MicroRNA-449a Inhibits Triple Negative Breast Cancer by Disturbing DNA Repair and Chromatid Separation. International Journal of Molecular Sciences, 2022, 23, 5131.	4.1	1
222	Use of recombinant DNA techniques to study DNA repair in Escherichia coli. Biochemical Society Transactions, 1984, 12, 218-220.	3.4	0
223	Metabolic Labeling, Immunoprecipitation, and Two-Dimensional Tryptic Phosphopeptide Mapping of Human Topoisomerase II. , 1999, 94, 243-252.		0
224	Role of the Bloom's syndrome helicase in suppression of genomic stability. Biochemical Society Transactions, 2001, 29, A17-A17.	3.4	0
225	Interaction between the C-Terminal Region of the Bloom's Syndrome Gene Product, BLM, and RAD51. Clinical Science, 2003, 104, 28P-28P.	0.0	0
226	Replication RecQ Helicase Systems. , 2021, , 104-111.		0
227	Biochemical Roles of RecQ Helicases. , 2004, , 12-21.		0
228	Human DNA topoisomerases $Ill \pm and Ill^2$ can functionally substitute for yeast TOP2 in chromosome segregation and recombination. Molecular Genetics and Genomics, 1996, 252, 79-86.	2.4	0