List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2673973/publications.pdf Version: 2024-02-01

TOLCA N.V.KARSUL

#	Article	IF	CITATIONS
1	Photoprotection: extending lessons learned from studying natural sunscreens to the design of artificial sunscreen constituents. Chemical Society Reviews, 2017, 46, 3770-3791.	18.7	146
2	Probing the Ultrafast Energy Dissipation Mechanism of the Sunscreen Oxybenzone after UVA Irradiation. Journal of Physical Chemistry Letters, 2015, 6, 1363-1368.	2.1	97
3	<i>Ab Initio</i> Study of Potential Ultrafast Internal Conversion Routes in Oxybenzone, Caffeic Acid, and Ferulic Acid: Implications for Sunscreens. Journal of Physical Chemistry A, 2014, 118, 11999-12010.	1.1	90
4	Mechanism of Photocatalytic Water Splitting with Graphitic Carbon Nitride: Photochemistry of the Heptazine–Water Complex. Journal of Physical Chemistry A, 2017, 121, 4754-4764.	1.1	85
5	A â€ ⁻ bottom up', ab initio computational approach to understanding fundamental photophysical processes in nitrogen containing heterocycles, DNA bases and base pairs. Physical Chemistry Chemical Physics, 2016, 18, 20007-20027.	1.3	78
6	Exploring quantum phenomena and vibrational control in $\ddot{l}f^*$ mediated photochemistry. Chemical Science, 2013, 4, 993-1001.	3.7	67
7	O–H bond fission in 4-substituted phenols: S1 state predissociation viewed in a Hammett-like framework. Chemical Science, 2013, 4, 2434.	3.7	46
8	Solvent induced conformer specific photochemistry of guaiacol. Physical Chemistry Chemical Physics, 2014, 16, 16187.	1.3	41
9	Photocatalytic Water Splitting with the Acridine Chromophore: A Computational Study. Journal of Physical Chemistry B, 2015, 119, 10664-10672.	1.2	41
10	Symmetry matters: photodissociation dynamics of symmetrically versus asymmetrically substituted phenols. Physical Chemistry Chemical Physics, 2014, 16, 588-598.	1.3	38
11	Theoretical insights into the photo-protective mechanisms of natural biological sunscreens: building blocks of eumelanin and pheomelanin. Physical Chemistry Chemical Physics, 2016, 18, 3644-3658.	1.3	34
12	Photoinduced water splitting via benzoquinone and semiquinone sensitisation. Physical Chemistry Chemical Physics, 2015, 17, 32183-32193.	1.3	30
13	Toolbox of Nonmetallocene Lanthanides: Multifunctional Catalysts in Group-Transfer Polymerization. Inorganic Chemistry, 2017, 56, 9754-9764.	1.9	30
14	Comparative study of methodologies for calculating metastable states of small to medium-sized molecules. Journal of Chemical Physics, 2019, 151, 244104.	1.2	30
15	Exploring the Dynamics of the Photoinduced Ring-Opening of Heterocyclic Molecules. Journal of Physical Chemistry Letters, 2017, 8, 3440-3451.	2.1	28
16	Competing 1πσ* mediated dynamics in mequinol: O–H versus O–CH3 photodissociation pathways. Physical Chemistry Chemical Physics, 2012, 14, 13415.	1.3	27
17	UV Photodissociation of Pyrroles: Symmetry and Substituent Effects. Journal of Physical Chemistry A, 2013, 117, 12067-12074.	1.1	26
18	Dynamics of the A-band ultraviolet photodissociation of methyl iodide and ethyl iodide via velocity-map imaging with †universal' detection. Physical Chemistry Chemical Physics, 2015, 17, 4096-4106.	1.3	26

#	Article	IF	CITATIONS
19	Exploring Norrish type I and type II reactions: an <i>ab initio</i> mechanistic study highlighting singlet-state mediated chemistry. Physical Chemistry Chemical Physics, 2019, 21, 14418-14428.	1.3	24
20	Towards Understanding Photodegradation Pathways in Lignins: The Role of Intramolecular Hydrogen Bonding in Excited States. Journal of Physical Chemistry Letters, 2014, 5, 2138-2143.	2.1	22
21	Ultrafast Excited-State Dynamics of 2,4-Dimethylpyrrole. Journal of Physical Chemistry A, 2014, 118, 10909-10918.	1.1	21
22	Photofragmentation Dynamics in Solution Probed by Transient IR Absorption Spectroscopy: πσ*-Mediated Bond Cleavage in <i>p</i> -Methylthiophenol and <i>p</i> -Methylthioanisole. Journal of Physical Chemistry Letters, 2012, 3, 3715-3720.	2.1	20
23	First Step toward a Universal Fluorescent Probe: Unravelling the Photodynamics of an Amino–Maleimide Fluorophore. Journal of Physical Chemistry A, 2017, 121, 6357-6365.	1.1	20
24	MOF-based electrocatalysts for high-efficiency CO ₂ conversion: structure, performance, and perspectives. Journal of Materials Chemistry A, 2021, 9, 22710-22728.	5.2	20
25	Excitedâ€State Deactivation of Adenine by Electronâ€Driven Protonâ€Transfer Reactions in Adenine–Water Clusters: Aâ€Computational Study. ChemPhysChem, 2016, 17, 1298-1304.	1.0	19
26	An exploration of the reactivity of singlet oxygen with biomolecular constituents. Chemical Communications, 2016, 52, 10996-10999.	2.2	18
27	Photodissociation dynamics of the pyridinyl radical: Time-dependent quantum wave-packet calculations. Journal of Chemical Physics, 2017, 146, 124304.	1.2	18
28	A Simple and Efficient Method for Simulating the Electronic Absorption Spectra of Criegee Intermediates: Benchmarking on CH ₂ OO and CH ₃ CHOO. Journal of Physical Chemistry A, 2021, 125, 4089-4097.	1.1	18
29	Near ultraviolet photochemistry of 2-bromo- and 2-iodothiophene: Revealing photoinduced ring opening in the gas phase?. Journal of Chemical Physics, 2015, 142, 224303.	1.2	17
30	Photodissociation Dynamics of CH ₂ OO on Multiple Potential Energy Surfaces: Experiment and Theory. Journal of Physical Chemistry A, 2021, 125, 6571-6579.	1.1	16
31	Fragmentation dynamics of the ethyl bromide and ethyl iodide cations: a velocity-map imaging study. Physical Chemistry Chemical Physics, 2014, 16, 2167-2178.	1.3	15
32	Tuning photochemistry: substituent effects on πσ* state mediated bond fission in thioanisoles. Physical Chemistry Chemical Physics, 2015, 17, 16246-16256.	1.3	14
33	The near ultraviolet photodissociation dynamics of 2- and 3-substituted thiophenols: Geometric vs. electronic structure effects. Journal of Chemical Physics, 2017, 147, 013923.	1.2	14
34	Photoinduced C–H bond fission in prototypical organic molecules and radicals. Physical Chemistry Chemical Physics, 2019, 21, 13880-13901.	1.3	14
35	Photodissociation dynamics of methyl vinyl ketone oxide: A four-carbon unsaturated Criegee intermediate from isoprene ozonolysis. Journal of Chemical Physics, 2021, 155, 174305.	1.2	14
36	Insights into the Ultrafast Dynamics of CH 2 OO and CH 3 CHOO Following Excitation to the Bright 1 ππ* State: The Role of Singlet and Triplet States. Photochemistry and Photobiology, 2021, , .	1.3	12

#	Article	IF	CITATIONS
37	Mechanisms of H and CO loss from the uracil nucleobase following low energy electron irradiation. Physical Chemistry Chemical Physics, 2017, 19, 17233-17241.	1.3	11
38	Role of Electron-Driven Proton-Transfer Processes in the Ultrafast Deactivation of Photoexcited Anionic 8-oxoGuanine-Adenine and 8-oxoGuanine-Cytosine Base Pairs. Molecules, 2017, 22, 135.	1.7	11
39	Electronic Absorption Spectroscopy and Photochemistry of Criegee Intermediates. Photochemistry and Photobiology, 2023, 99, 4-18.	1.3	11
40	Mechanistic insights into excited state intramolecular proton transfer in isolated and metal chelated supramolecular chemosensors. Dalton Transactions, 2016, 45, 18921-18930.	1.6	10
41	Mechanistic insights into photoinduced damage of DNA and RNA nucleobases in the gas phase and in bulk solution. Faraday Discussions, 2018, 207, 329-350.	1.6	10
42	Modeling the Conformer-Dependent Electronic Absorption Spectra and Photolysis Rates of Methyl Vinyl Ketone Oxide and Methacrolein Oxide. Journal of Physical Chemistry A, 2022, 126, 485-496.	1.1	10
43	Photofragmentation dynamics of N,N-dimethylformamide following excitation at 193 nm. Journal of Chemical Physics, 2017, 147, 013941.	1.2	9
44	Mechanisms of photoreactivity in hydrogen-bonded adenine–H ₂ O complexes. Physical Chemistry Chemical Physics, 2019, 21, 14238-14249.	1.3	9
45	Extreme population inversion in the fragments formed by UV photoinduced S–H bond fission in 2-thiophenethiol. Physical Chemistry Chemical Physics, 2016, 18, 11401-11410.	1.3	8
46	Structure, DFT Calculations, and Magnetic Characterization of Coordination Polymers of Bridged Dicyanamido-Metal(II) Complexes. Magnetochemistry, 2019, 5, 41.	1.0	6
47	Photocrosslinking between nucleic acids and proteins: general discussion. Faraday Discussions, 2018, 207, 283-306.	1.6	5
48	Origins of Photodamage in Pheomelanin Constituents: Photochemistry of 4-Hydroxybenzothiazole. Journal of Physical Chemistry A, 2018, 122, 1986-1993.	1.1	5
49	Steric Effects of Alkyl Substituents at N-Donor Bidentate Amines Direct the Nuclearity, Bonding and Bridging Modes in Isothiocyanato-Copper(II) Coordination Compounds. Crystals, 2019, 9, 38.	1.0	5
50	Affordable Setup for Studying Photochemistry in Action in Undergraduate Teaching Laboratories: Principles and Applications. Journal of Chemical Education, 2020, 97, 2203-2211.	1.1	5
51	Photofragment Translational Spectroscopy Studies of H Atom Loss Following Ultraviolet Photoexcitation of Methimazole in the Gas Phase. Journal of Physical Chemistry A, 2018, 122, 9869-9878.	1.1	4
52	Hydrogen–Deuterium Exchange in Basic Near-Critical and Supercritical Media: An Experimental and Theoretical Study. Journal of Physical Chemistry A, 2020, 124, 2530-2536.	1.1	4
53	Electron-induced origins of prebiotic building blocks of sugars: mechanism of self-reactions of a methanol anion dimer. Physical Chemistry Chemical Physics, 2018, 20, 12599-12607.	1.3	3
54	The role of 1πσâ^— states in the formation of adenine radical-cations in DNA duplexes. Chemical Physics, 2018, 515, 464-471.	0.9	3

#	Article	IF	CITATIONS
55	Quantifying rival bond fission probabilities following photoexcitation: C–S bond fission in <i>t</i> -butylmethylsulfide. Chemical Science, 2019, 10, 5290-5298.	3.7	3
56	The Role of Norrish Type-I Chemistry in Photoactive Drugs: An ab initio Study of a Cyclopropenone-Enediyne Drug Precursor. Frontiers in Chemistry, 2020, 8, 596590.	1.8	3
57	The states that hide in the shadows: the potential role of conical intersections in the ground state unimolecular decay of a Criegee intermediate. Physical Chemistry Chemical Physics, 2021, 24, 532-540.	1.3	3
58	Role of Pr-Vacancies and O-Interstitials on the Activity and Stability of (Pr _{1â^'x} Ln _x) ₂ NiO ₄ (Ln = La, Nd, Pm, Sm, Gd, Tb, Dy, and) Tj I	ETQg0 0 0	rgBT /Overlo
	168, 124508.		
59	Oxidative Addition of Singlet Oxygen to Model Building Blocks of the Aerucyclamide A Peptide: A First-Principles Approach. Journal of Physical Chemistry A, 2020, 124, 498-504.	1.1	2
60	Light induced charge and energy transport in nucleic acids and proteins: general discussion. Faraday Discussions, 2018, 207, 153-180.	1.6	1
61	Ultraviolet photodissociation of gas-phase transition metal complexes: dicarbonylcyclopentadienyliodoiron(II). Molecular Physics, 2021, 119, e1813343.	0.8	1
62	Light induced damage and repair in nucleic acids and proteins: general discussion. Faraday Discussions, 2018, 207, 389-408.	1.6	0
63	Bionanophotonics: general discussion. Faraday Discussions, 2018, 207, 491-512.	1.6	0
64	Photoprotective Properties of Eumelanin: Computational Insights into the Photophysics of a Catechol:Quinone Heterodimer Model System. Photochem, 2021, 1, 26-37.	1.3	0
65	Simulating Electronic Absorption Spectra of Atmospherically Relevant Molecules: A Systematic Assignment for Enhancing Undergraduate STEM Education, Education Sciences, 2022, 12, 252.	1.4	0