Meena Jhanwar-Uniyal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2672879/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Disentangling the signaling pathways of mTOR complexes, mTORC1 and mTORC2, as a therapeutic target in glioblastoma. Advances in Biological Regulation, 2022, 83, 100854.	1.4	8
2	Molecular Stratification of Medulloblastoma: Clinical Outcomes and Therapeutic Interventions. Anticancer Research, 2022, 42, 2225-2239.	0.5	11
3	Understanding the Biological Basis of Glioblastoma Patient-derived Spheroids. Anticancer Research, 2021, 41, 1183-1195.	0.5	3
4	Involvement of mTOR Pathways in Recovery from Spinal Cord Injury by Modulation of Autophagy and Immune Response. Biomedicines, 2021, 9, 593.	1.4	9
5	Targeting the mTOR pathway using novel ATP‑competitive inhibitors, Torin1, Torin2 and XL388, in the treatment of glioblastoma. International Journal of Oncology, 2021, 59, .	1.4	12
6	Potential for Treatment of Glioblastoma: New Aspects of Superparamagnetic Iron Oxide Nanoparticles. Anticancer Research, 2020, 40, 5989-5994.	0.5	18
7	Transplantation of neural precursors generated from spinal progenitor cells reduces inflammation in spinal cord injury via NF-κB pathway inhibition. Journal of Neuroinflammation, 2019, 16, 12.	3.1	42
8	The effect of 808 nm and 905 nm wavelength light on recovery after spinal cord injury. Scientific Reports, 2019, 9, 7660.	1.6	17
9	Diverse signaling mechanisms of mTOR complexes: mTORC1 and mTORC2 in forming a formidable relationship. Advances in Biological Regulation, 2019, 72, 51-62.	1.4	179
10	Molecular Sequence of Events and Signaling Pathways in Cerebral Metastases. Anticancer Research, 2018, 38, 1859-1877.	0.5	6
11	Does combined therapy of curcumin and epigallocatechin gallate have a synergistic neuroprotective effect against spinal cord injury?. Neural Regeneration Research, 2018, 13, 119.	1.6	26
12	Discrete signaling mechanisms of mTORC1 and mTORC2: Connected yet apart in cellular and molecular aspects. Advances in Biological Regulation, 2017, 64, 39-48.	1.4	102
13	A Comparative Study of Three Different Types of Stem Cells for Treatment of Rat Spinal Cord Injury. Cell Transplantation, 2017, 26, 585-603.	1.2	69
14	A green tea polyphenol epigallocatechin-3-gallate enhances neuroregeneration after spinal cord injury by altering levels of inflammatory cytokines. Neuropharmacology, 2017, 126, 213-223.	2.0	41
15	Mighty RapaLink-1 vanquishes undruggable mutant mTOR in glioblastoma. Translational Cancer Research, 2017, 6, S1143-S1148.	0.4	5
16	The Anti-Inflammatory Compound Curcumin Enhances Locomotor and Sensory Recovery after Spinal Cord Injury in Rats by Immunomodulation. International Journal of Molecular Sciences, 2016, 17, 49.	1.8	48
17	ATP-site binding inhibitor effectively targets mTORC1 and mTORC2 complexes in glioblastoma. International Journal of Oncology, 2016, 48, 1045-1052.	1.4	11
18	Molecular Pathways Mediating Metastases to the Brain via Epithelial-to-Mesenchymal Transition: Genes, Proteins, and Functional Analysis. Anticancer Research, 2016, 36, 523-32.	0.5	37

#	Article	IF	CITATIONS
19	Comparison of intraspinal and intrathecal implantation of induced pluripotent stem cell-derived neural precursors for the treatment of spinal cord injury in rats. Stem Cell Research and Therapy, 2015, 6, 257.	2.4	56
20	Glioblastoma: Molecular Pathways, Stem Cells and Therapeutic Targets. Cancers, 2015, 7, 538-555.	1.7	103
21	Distinct signaling mechanisms of mTORC1 and mTORC2 in glioblastoma multiforme: A tale of two complexes. Advances in Biological Regulation, 2015, 57, 64-74.	1.4	63
22	Involvement of mTOR signaling pathways in regulating growth and dissemination of metastatic brain tumors via EMT. Anticancer Research, 2015, 35, 689-96.	0.5	15
23	Stem Cell Therapy and Curcumin Synergistically Enhance Recovery from Spinal Cord Injury. PLoS ONE, 2014, 9, e88916.	1.1	59
24	Human Mesenchymal Stem Cells Modulate Inflammatory Cytokines after Spinal Cord Injury in Rat. International Journal of Molecular Sciences, 2014, 15, 11275-11293.	1.8	97
25	The impact of arsenic trioxide and all-trans retinoic acid on p53 R273H-codon mutant glioblastoma. Tumor Biology, 2014, 35, 4567-4580.	0.8	12
26	Deconstructing mTOR complexes in regulation of Glioblastoma Multiforme and its stem cells. Advances in Biological Regulation, 2013, 53, 202-210.	1.4	47
27	Targeting cancer stem cells in glioblastoma multiforme using mTOR inhibitors and the differentiating agent all-trans retinoic acid. Oncology Reports, 2013, 30, 1645-1650.	1.2	42
28	Recovery from spinal cord injury using naturally occurring antiinflammatory compound curcumin. Journal of Neurosurgery: Spine, 2012, 16, 497-503.	0.9	33
29	Deciphering the signaling pathways of cancer stem cells of glioblastoma multiforme: Role of Akt/mTOR and MAPK pathways. Advances in Enzyme Regulation, 2011, 51, 164-170.	2.9	28
30	Stem Cell Marker Nestin and c-Jun NH2-Terminal Kinases in Tumor and Peritumor Areas of Glioblastoma Multiforme: Possible Prognostic Implications. Clinical Cancer Research, 2007, 13, 6970-6977.	3.2	75