List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2672750/publications.pdf Version: 2024-02-01

FANC-YANG LUL

#	Article	IF	CITATIONS
1	Sulfur vacancy engineering of MoS2 via phosphorus incorporation for improved electrocatalytic N2 reduction to NH3. Applied Catalysis B: Environmental, 2022, 300, 120733.	10.8	85
2	Highly Efficient Electrocatalytic N ₂ Reduction to Ammonia over Metallic 1T Phase of MoS ₂ Enabled by Active Sites Separation Mechanism. Advanced Science, 2022, 9, e2103583.	5.6	31
3	Dual-layer vermiculite nanosheet based hybrid film to suppress dendrite growth in lithium metal batteries. Journal of Energy Chemistry, 2022, 69, 205-210.	7.1	23
4	Low ost Fabrication of Sb ₂ S ₃ Solar Cells: Direct Evaporation from Raw Stibnite Ore. Solar Rrl, 2022, 6, .	3.1	11
5	11.39% efficiency Cu ₂ ZnSn(S,Se) ₄ solar cells from scrap brass. SusMat, 2022, 2, 206-211.	7.8	2
6	Synergistic defect- and interfacial-engineering of a Bi ₂ S ₃ -based nanoplate network for high-performance photoelectrochemical solar water splitting. Journal of Materials Chemistry A, 2022, 10, 7830-7840.	5.2	13
7	Regeneration of Al-doped LiNi0.5Co0.2Mn0.3O2 cathode material by simulated hydrometallurgy leachate of spent lithium-ion batteries. Transactions of Nonferrous Metals Society of China, 2022, 32, 593-603.	1.7	15
8	Ultra-fine Sb2S3 particles encapsulated in activated-carbon: A high-performance anode for Li-ion batteries. Journal of Alloys and Compounds, 2022, 907, 164469.	2.8	3
9	Perovskite Quantum Dot Solar Cells Fabricated from Recycled Lead-Acid Battery Waste. , 2022, 4, 120-127.		7
10	Nanoscale interface engineering of inorganic Solid-State electrolytes for High-Performance alkali metal batteries. Journal of Colloid and Interface Science, 2022, 621, 41-66.	5.0	12
11	The integration structure enhances performance of perovskite solar cells. Science Bulletin, 2021, 66, 310-313.	4.3	2
12	Perovskite-based tandem solar cells. Science Bulletin, 2021, 66, 621-636.	4.3	91
13	A two-dimension laminar composite protective layer for dendrite-free lithium metal anode. Journal of Energy Chemistry, 2021, 56, 391-394.	7.1	26
14	Enhanced photoelectrochemical degradation of tetracycline hydrochloride with FeOOH and Au nanoparticles decorated WO3. Chemical Engineering Journal, 2021, 407, 127195.	6.6	59
15	Stable alkali metal anodes enabled by crystallographic optimization – a review. Journal of Materials Chemistry A, 2021, 9, 20957-20984.	5.2	32
16	Anode Electrolysis of Manganese Dioxide in Photoelectrochemical Cells. Jom, 2021, 73, 2479.	0.9	1
17	Ambient air-processed Cu2ZnSn(S,Se)4 solar cells with over 12% efficiency. Science Bulletin, 2021, 66, 880-883.	4.3	27
18	Enhancing the performance of Cu2ZnSnS4 solar cell fabricated via successive ionic layer adsorption and reaction method by optimizing the annealing process. Solar Energy, 2021, 220, 204-210.	2.9	7

#	Article	IF	CITATIONS
19	Bi ₂ O _{2.33} Nanostructure-Based Photoanodes for Photoelectrochemical Determination of Trace Soluble Sulfides. ACS Applied Nano Materials, 2021, 4, 5778-5784.	2.4	8
20	Magnetron sputtering Al–Sc alloying layer gifts long cycle life for lithium metal batteries. Materials Letters, 2021, 294, 129705.	1.3	1
21	Boosting the Electrochemical Performance of Allâ€Solidâ€State Batteries with Sulfide Li ₆ PS ₅ Cl Solid Electrolyte Using Li ₂ WO ₄ â€Coated LiCoO ₂ Cathode. Advanced Materials Interfaces, 2021, 8, 2100624.	1.9	20
22	Sb2S3 nanorods/porous-carbon composite from natural stibnite ore as high-performance anode for lithium-ion batteries. Transactions of Nonferrous Metals Society of China, 2021, 31, 2051-2061.	1.7	14
23	A Green Lead Recycling Strategy from Used Lead Acid Batteries for Efficient Inverted Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2021, 12, 9595-9601.	2.1	6
24	Porous Heteroatom-Doped Ti ₃ C ₂ T _{<i>x</i>} MXene Microspheres Enable Strong Adsorption of Sodium Polysulfides for Long-Life Room-Temperature Sodium–Sulfur Batteries. ACS Nano, 2021, 15, 16207-16217.	7.3	46
25	Sulfurized polyacrylonitrile cathodes with electrochemical and structural tuning for high capacity all-solid-state lithium–sulfur batteries. Sustainable Energy and Fuels, 2021, 5, 5603-5614.	2.5	8
26	Insights on the Properties of the O-Doped Argyrodite Sulfide Solid Electrolytes (Li ₆ PS _{5–<i>x</i>} ClO _{<i>x</i>,} <i>x</i> =0–1). ACS Applied Materials & Interfaces, 2021, 13, 54924-54935.	4.0	32
27	A comprehensive hydrometallurgical recycling approach for the environmental impact mitigation of EoL solar cells. Journal of Environmental Chemical Engineering, 2021, 9, 106830.	3.3	17
28	Preparation and characterization of a novel and recyclable InVO4/ZnFe2O4 composite for methylene blue removal by adsorption and visible-light photocatalytic degradation. Applied Surface Science, 2020, 501, 144006.	3.1	55
29	Carbon quantum dots sensitized Bi2O3 photoanode with enhanced photoelectrocatalytic properties. Chemical Physics Letters, 2020, 739, 137025.	1.2	9
30	Emerging inorganic compound thin film photovoltaic materials: Progress, challenges and strategies. Materials Today, 2020, 41, 120-142.	8.3	81
31	Advances in kesterite Cu2ZnSn(S, Se)4 solar cells. Science Bulletin, 2020, 65, 698-701.	4.3	49
32	Defect Control for 12.5% Efficiency Cu ₂ ZnSnSe ₄ Kesterite Thinâ€Film Solar Cells by Engineering of Local Chemical Environment. Advanced Materials, 2020, 32, e2005268.	11.1	133
33	Electrochemical behavior simulation of high specific energy power lithium-ion batteries based on numerical model. Ionics, 2020, 26, 5513-5523.	1.2	6
34	Reductive acid leaching of valuable metals from spent lithium-ion batteries using hydrazine sulfate as reductant. Transactions of Nonferrous Metals Society of China, 2020, 30, 2256-2264.	1.7	26
35	Transition metal dichalcogenides in alliance with Ag ameliorate the interfacial connection between Li anode and garnet solid electrolyte. Journal of Power Sources, 2020, 468, 228379.	4.0	13
36	A Stable and Efficient Photocathode Using an Sb ₂ S ₃ Absorber in a Near-Neutral Electrolyte for Water Splitting. ACS Applied Energy Materials, 2020, 3, 6188-6194.	2.5	29

#	Article	IF	CITATIONS
37	Preparation of Sb2O3/Sb2S3/FeOOH composite photoanodes for enhanced photoelectrochemical water oxidation. Transactions of Nonferrous Metals Society of China, 2020, 30, 1625-1634.	1.7	14
38	Device Postannealing Enabling over 12% Efficient Solutionâ€Processed Cu ₂ ZnSnS ₄ Solar Cells with Cd ²⁺ Substitution. Advanced Materials, 2020, 32, e2000121.	11.1	201
39	Simulation and parameter identification based on electrochemical- thermal coupling model of power lithium ion-battery. Journal of Alloys and Compounds, 2020, 844, 156003.	2.8	35
40	Integrated Photorechargeable Energy Storage System: Nextâ€Generation Power Source Driving the Future. Advanced Energy Materials, 2020, 10, 1903930.	10.2	128
41	Quasi-Vertically-Orientated Antimony Sulfide Inorganic Thin-Film Solar Cells Achieved by Vapor Transport Deposition. ACS Applied Materials & Interfaces, 2020, 12, 22825-22834.	4.0	50
42	Sol-gel solution-processed Cu2SrSnS4 thin films for solar energy harvesting. Thin Solid Films, 2020, 697, 137828.	0.8	14
43	High openâ€circuit voltage CuSbS ₂ solar cells achieved through the formation of epitaxial growth of CdS/CuSbS ₂ heteroâ€interface by postâ€annealing treatment. Progress in Photovoltaics: Research and Applications, 2019, 27, 37-43.	4.4	26
44	Improving the crystallization and carrier recombination of Cu2ZnSnS4 thin film deposited on Mo-coated soda-lime glass by extra sodium doping through solution process. Materials Letters, 2019, 254, 50-53.	1.3	8
45	Amorphous Sb 2 S 3 Anodes by Reactive Radio Frequency Magnetron Sputtering for Highâ€Performance Lithiumâ€Ion Half/Full Cells. Energy Technology, 2019, 7, 1900928.	1.8	15
46	Photoelectrochemical Determination of Cu ²⁺ Using a WO ₃ /CdS Heterojunction Photoanode. ACS Applied Materials & Interfaces, 2019, 11, 37541-37549.	4.0	65
47	High-performance wide-bandgap copolymers with dithieno[3,2- <i>b</i> :2′,3′- <i>d</i>]pyridin-5(4 <i>H</i>)-one units. Materials Chemistry Frontiers, 2019, 3, 399-402.	3.2	18
48	Cyclic Voltammetry Analysis of Co-Electrodeposition Mechanism of rGO-Sb ₂ Se ₃ Thin Films Photocathode. Journal of the Electrochemical Society, 2019, 166, D421-D426.	1.3	3
49	A two-terminal all-inorganic perovskite/organic tandem solar cell. Science Bulletin, 2019, 64, 885-887.	4.3	76
50	CsPbI _{2.69} Br _{0.31} solar cells from low-temperature fabrication. Materials Chemistry Frontiers, 2019, 3, 1139-1142.	3.2	19
51	CsPbl2.25Br0.75 solar cells with 15.9% efficiency. Science Bulletin, 2019, 64, 507-510.	4.3	62
52	Rapid sintering of ceramic solid electrolytes LiZr2(PO4)3 and Li1.2Ca0.1Zr1.9(PO4)3 using a microwave sintering process at low temperatures. Ceramics International, 2019, 45, 11068-11072.	2.3	13
53	The effect of different Cu/Sn ratios on the properties of monoclinic Cu2SnS3 thin films and solar cells fabricated by the sol–gel method. Journal of Materials Science: Materials in Electronics, 2019, 30, 4378-4384.	1.1	4
54	Solution-processed ultrathin SnO2 passivation of Absorber/Buffer Heterointerface and Grain Boundaries for High Efficiency Kesterite Cu2ZnSnS4 Solar Cells. , 2019, , .		0

#	Article	IF	CITATIONS
55	Beyond 10% efficiency Cu ₂ ZnSnS ₄ solar cells enabled by modifying the heterojunction interface chemistry. Journal of Materials Chemistry A, 2019, 7, 27289-27296.	5.2	46
56	Catalytic effects of NH4+ on hydrogen evolution and manganese electrodeposition on stainless steel. Transactions of Nonferrous Metals Society of China, 2019, 29, 2430-2439.	1.7	10
57	Study on the Adhesion Force Between Ga-Doped ZnO Thin Films and Polymer Substrates. Journal of Nanoscience and Nanotechnology, 2019, 19, 240-244.	0.9	7
58	Fabrication of Sb2S3 thin films by sputtering and post-annealing for solar cells. Ceramics International, 2019, 45, 3044-3051.	2.3	64
59	Construction of In2Se3/MoS2 heterojunction as photoanode toward efficient photoelectrochemical water splitting. Chemical Engineering Journal, 2019, 358, 752-758.	6.6	42
60	Graphene-Sb2Se3 thin films photoelectrode synthesized by in situ electrodeposition. Materials Letters, 2018, 224, 109-112.	1.3	20
61	Efficiency Enhancement of Kesterite Cu ₂ ZnSnS ₄ Solar Cells via Solution-Processed Ultrathin Tin Oxide Intermediate Layer at Absorber/Buffer Interface. ACS Applied Energy Materials, 2018, 1, 154-160.	2.5	53
62	The effect of thermal evaporated MoO3 intermediate layer as primary back contact for kesterite Cu2ZnSnS4 solar cells. Thin Solid Films, 2018, 648, 39-45.	0.8	34
63	Minority lifetime and efficiency improvement for CZTS solar cells via Cd ion soaking and post treatment. Journal of Alloys and Compounds, 2018, 750, 328-332.	2.8	31
64	Flexible kesterite Cu2ZnSnS4 solar cells with sodium-doped molybdenum back contacts on stainless steel substrates. Solar Energy Materials and Solar Cells, 2018, 182, 14-20.	3.0	49
65	Boosting the kesterite Cu2ZnSnS4 solar cells performance by diode laser annealing. Solar Energy Materials and Solar Cells, 2018, 175, 71-76.	3.0	27
66	Understanding the effect of Cadmium alloying in high-efficiency sulphide kesterite Cu2ZnxCd1-xSnS4 solar cell by PDS and HRSTEM. , 2018, , .		3
67	Sb ₂ O ₃ /Sb ₂ S ₃ Heterojunction Composite Thin Film Photoanode Prepared via Chemical Bath Deposition and Post-Sulfidation. Journal of the Electrochemical Society, 2018, 165, H1052-H1058.	1.3	10
68	ALD ZnSnO buffer layer for enhancing heterojunction interface quality of CZTS solar cells. , 2018, , .		0
69	Boosting the efficiency of kesterite Cu2ZnSnS4 solar cells by optimizing the heterojunction interface quality. , 2018, , .		0
70	Towards 9% sulfide CZTS solar cells fabricated by a sol-gel process. , 2018, , .		5
71	Enhanced Heterojunction Interface Quality To Achieve 9.3% Efficient Cd-Free Cu ₂ ZnSnS ₄ Solar Cells Using Atomic Layer Deposition ZnSnO Buffer Layer. Chemistry of Materials, 2018, 30, 7860-7871.	3.2	66
72	Thermal-evaporated selenium as a hole-transporting material for planar perovskite solar cells. Solar Energy Materials and Solar Cells, 2018, 185, 130-135.	3.0	22

#	Article	IF	CITATIONS
73	In situ growth of CuSbS2 thin films by reactive co-sputtering for solar cells. Materials Science in Semiconductor Processing, 2018, 84, 101-106.	1.9	13
74	Self-assembled Nanometer-Scale ZnS Structure at the CZTS/ZnCdS Heterointerface for High-Efficiency Wide Band Gap Cu ₂ ZnSnS ₄ Solar Cells. Chemistry of Materials, 2018, 30, 4008-4016.	3.2	37
75	The Role of Hydrogen from ALDâ€Al ₂ O ₃ in Kesterite Cu ₂ ZnSnS ₄ Solar Cells: Grain Surface Passivation. Advanced Energy Materials, 2018, 8, 1701940.	10.2	68
76	Hydrogen evolution behavior of aluminum cathode in comparison with stainless steel for electrowinning of manganese in sulfate solution. Hydrometallurgy, 2018, 179, 245-253.	1.8	10
77	Effect of sulfurization temperature on the properties of Culn(S,Se)2 thin films fabricated from electrodeposited CulnSe2 precursors. Superlattices and Microstructures, 2018, 122, 614-623.	1.4	3
78	Solution-Processed Trigonal Cu ₂ BaSnS ₄ Thin-Film Solar Cells. ACS Applied Energy Materials, 2018, 1, 3420-3427.	2.5	54
79	Cu2ZnSnS4 solar cells with over 10% power conversion efficiency enabled by heterojunction heat treatment. Nature Energy, 2018, 3, 764-772.	19.8	623
80	Bioinspired fiber-like porous Cu/N/C electrocatalyst facilitating electron transportation toward oxygen reaction for metal–air batteries. Nanoscale, 2018, 10, 15819-15825.	2.8	30
81	Famatinite Cu ₃ SbS ₄ nanocrystals as hole transporting material for efficient perovskite solar cells. Journal of Materials Chemistry C, 2018, 6, 7989-7993.	2.7	20
82	Room-temperature deposition of flexible transparent conductive Ga-doped ZnO thin films by magnetron sputtering on polymer substrates. Journal of Materials Science: Materials in Electronics, 2017, 28, 6093-6098.	1.1	6
83	Realization of nanostructured N-doped p-type Bi 2 O 3 thin films. Materials Letters, 2017, 193, 228-231.	1.3	16
84	In situ growth of Sb 2 S 3 thin films by reactive sputtering on n-Si(100) substrates for top sub-cell of silicon based tandem solar cells. Materials Letters, 2017, 195, 186-189.	1.3	25
85	Effects of Illumination on the Electrochemical Behavior of Selenium Electrodeposition on ITO Substrates. Journal of the Electrochemical Society, 2017, 164, H225-H231.	1.3	6
86	Spatial Grain Growth and Composition Evolution during Sulfurizing Metastable Wurtzite Cu ₂ ZnSnS ₄ Nanocrystal-Based Coatings. Chemistry of Materials, 2017, 29, 2110-2121.	3.2	11
87	Study on the adhesive mechanism between the Ga doped ZnO thin film and the polycarbonate substrate. Materials Science in Semiconductor Processing, 2017, 66, 105-108.	1.9	7
88	Colloidal synthesis and characterization of single-crystalline Sb ₂ Se ₃ nanowires. RSC Advances, 2017, 7, 24589-24593.	1.7	11
89	Light-Bias-Dependent External Quantum Efficiency of Kesterite Cu2ZnSnS4 Solar Cells. ACS Photonics, 2017, 4, 1684-1690.	3.2	20
90	Beyond 11% Efficient Sulfide Kesterite Cu ₂ Zn _{<i>x</i>} Cd _{1–<i>x</i>} SnS ₄ Solar Cell: Effects of Cadmium Alloying. ACS Energy Letters, 2017, 2, 930-936.	8.8	249

#	Article	IF	CITATIONS
91	Fabrication of Cu2ZnSnS4 thin film solar cells by annealing of reactively sputtered precursors. Journal of Alloys and Compounds, 2017, 701, 55-62.	2.8	15
92	Hybrid Ag Nanowire–ITO as Transparent Conductive Electrode for Pure Sulfide Kesterite Cu ₂ ZnSnS ₄ Solar Cells. Journal of Physical Chemistry C, 2017, 121, 20597-20604.	1.5	14
93	Low-Temperature Solution Processed Random Silver Nanowire as a Promising Replacement for Indium Tin Oxide. ACS Applied Materials & Interfaces, 2017, 9, 34093-34100.	4.0	23
94	Polytype 1T/2H MoS2 heterostructures for efficient photoelectrocatalytic hydrogen evolution. Chemical Engineering Journal, 2017, 330, 102-108.	6.6	116
95	Characterization of Bi2S3 thin films synthesized by an improved successive ionic layer adsorption and reaction (SILAR) method. Materials Letters, 2017, 209, 479-482.	1.3	11
96	Facile synthesis and photoelectrochemical characterization of Sb2O3 nanoprism arrays. Journal of Alloys and Compounds, 2017, 727, 469-474.	2.8	22
97	Beyond 8% ultrathin kesterite Cu2ZnSnS4 solar cells by interface reaction route controlling and self-organized nanopattern at the back contact. NPG Asia Materials, 2017, 9, e401-e401.	3.8	118
98	Boost Voc of pure sulfide kesterite solar cell via a double CZTS layer stacks. Solar Energy Materials and Solar Cells, 2017, 160, 7-11.	3.0	65
99	Fabrication of Efficient Cu2ZnSnS4 Solar Cells by Sputtering Single Stoichiometric Target. Coatings, 2017, 7, 19.	1.2	16
100	Towards 10% State-of-the-Art Pure Sulfide Cu2ZnSnS4 Solar Cell by modifying the Interface Chemistry. , 2017, , .		0
101	Fabrication of Cu 2 ZnSn(S,Se) 4 thin film solar cells by selenization of reactively sputtered precursors. Materials Letters, 2016, 182, 336-339.	1.3	5
102	Nanoscale Microstructure and Chemistry of Cu ₂ ZnSnS ₄ /CdS Interface in Kesterite Cu ₂ ZnSnS ₄ Solar Cells. Advanced Energy Materials, 2016, 6, 1600706.	10.2	113
103	The current status and future prospects of kesterite solar cells: a brief review. Progress in Photovoltaics: Research and Applications, 2016, 24, 879-898.	4.4	316
104	Over 9% Efficient Kesterite Cu ₂ ZnSnS ₄ Solar Cell Fabricated by Using Zn _{1–} <i>_x</i> Cd <i>_x</i> S Buffer Layer. Advanced Energy Materials, 2016, 6, 1600046.	10.2	322
105	Large Voc improvement and 9.2% efficient pure sulfide Cu <inf>2</inf> ZnSnS <inf>4</inf> solar cells by heterojunction interface engineering. , 2016, , .		3
106	The electrochemical behavior of tellurium on stainless steel substrate in alkaline solution and the illumination effects. Journal of Electroanalytical Chemistry, 2016, 771, 17-22.	1.9	15
107	Shape and stoichiometry control of bismuth selenide nanocrystals in colloidal synthesis. RSC Advances, 2016, 6, 47840-47843.	1.7	10
108	Understanding the Key Factors of Enhancing Phase and Compositional Controllability for 6% Efficient Pure-Sulfide Cu ₂ ZnSnS ₄ Solar Cells Prepared from Quaternary Wurtzite Nanocrystals. Chemistry of Materials, 2016, 28, 3649-3658.	3.2	32

#	Article	IF	CITATIONS
109	Synthesis of Cu2ZnSnS4 thin film from mixed solution of Cu2SnS3 nanoparticles and Zn ions. Transactions of Nonferrous Metals Society of China, 2016, 26, 2102-2108.	1.7	0
110	Influence of sodium incorporation on kesterite Cu2ZnSnS4 solar cells fabricated on stainless steel substrates. Solar Energy Materials and Solar Cells, 2016, 157, 565-571.	3.0	48
111	Photoelectrochemical properties of Bi 2 S 3 thin films deposited by successive ionic layer adsorption and reaction (SILAR) method. Journal of Alloys and Compounds, 2016, 686, 684-692.	2.8	33
112	In situ growth of SnS absorbing layer by reactive sputtering for thin film solar cells. RSC Advances, 2016, 6, 4108-4115.	1.7	53
113	Boosting the efficiency of pure sulfide CZTS solar cells using the In/Cd-based hybrid buffers. Solar Energy Materials and Solar Cells, 2016, 144, 700-706.	3.0	101
114	Highly efficient perovskite solar cells with precursor composition-dependent morphology. Solar Energy Materials and Solar Cells, 2016, 145, 231-237.	3.0	29
115	Fabrication of earth-abundant Cu ₂ ZnSn(S,Se) ₄ light absorbers by a sol–gel and selenization route for thin film solar cells. RSC Advances, 2016, 6, 6562-6570.	1.7	14
116	Efficient Planar Perovskite Solar Cells with Reduced Hysteresis and Enhanced Open Circuit Voltage by Using PW ₁₂ –TiO ₂ as Electron Transport Layer. ACS Applied Materials & Interfaces, 2016, 8, 8520-8526.	4.0	40
117	MoS ₂ nanodot decorated In ₂ S ₃ nanoplates: a novel heterojunction with enhanced photoelectrochemical performance. Chemical Communications, 2016, 52, 1867-1870.	2.2	46
118	Modification of absorber quality and Mo-back contact by a thin Bi intermediate layer for kesterite Cu2ZnSnS4 solar cells. Solar Energy Materials and Solar Cells, 2016, 144, 537-543.	3.0	54
119	Epitaxial Cu2ZnSnS4 thin film on Si (111) $4\hat{A}^{\circ}$ substrate. Applied Physics Letters, 2015, 106, .	1.5	41
120	Back contact-absorber interface modification by inserting carbon intermediate layer and conversion efficiency improvement in Cu ₂ ZnSn(S,Se) ₄ solar cell. Physica Status Solidi - Rapid Research Letters, 2015, 9, 687-691.	1.2	20
121	Cu2ZnSnS4 thin film solar cells from coated nanocrystals ink. Journal of Materials Science: Materials in Electronics, 2015, 26, 1932-1939.	1.1	16
122	Kesterite Cu ₂ ZnSn(S,Se) ₄ Solar Cells with beyond 8% Efficiency by a Sol–Gel and Selenization Process. ACS Applied Materials & Interfaces, 2015, 7, 14376-14383.	4.0	72
123	Characterization of porous bismuth oxide (Bi ₂ O ₃) nanoplates prepared by chemical bath deposition and post annealing. RSC Advances, 2015, 5, 65591-65594.	1.7	38
124	Rapid thermal annealed Molybdenum back contact for Cu2ZnSnS4 thin film solar cells. Applied Physics Letters, 2015, 106, .	1.5	24
125	Fabrication of Cu2ZnSnS4 thin film solar cells by sulfurization of electrodeposited stacked binary Cu–Zn and Cu–Sn alloy layers. Materials Letters, 2015, 155, 44-47.	1.3	15
126	Improvement of <i>J</i> _{sc} in a Cu ₂ ZnSnS ₄ Solar Cell by Using a Thin Carbon Intermediate Layer at the Cu ₂ ZnSnS ₄ /Mo Interface. ACS Applied Materials & Interfaces, 2015, 7, 22868-22873.	4.0	78

#	Article	IF	CITATIONS
127	Exploring the application of metastable wurtzite nanocrystals in pure-sulfide Cu ₂ ZnSnS ₄ solar cells by forming nearly micron-sized large grains. Journal of Materials Chemistry A, 2015, 3, 23185-23193.	5.2	32
128	Photoelectrochemically deposited Sb ₂ Se ₃ thin films: deposition mechanism and characterization. RSC Advances, 2015, 5, 85592-85597.	1.7	35
129	Kesterite Cu ₂ ZnSnS ₄ thin film solar cells by a facile DMF-based solution coating process. Journal of Materials Chemistry C, 2015, 3, 10783-10792.	2.7	61
130	Cu2ZnSnS4 thin film solar cell fabricated by co-electrodeposited metallic precursor. Journal of Materials Science: Materials in Electronics, 2015, 26, 204-210.	1.1	10
131	Optimization of precursor deposition for evaporated Cu2ZnSnS4 solar cells. Applied Physics A: Materials Science and Processing, 2015, 118, 893-899.	1.1	7
132	Effects of potassium doping on solution processed kesterite Cu2ZnSnS4 thin film solar cells. Applied Physics Letters, 2014, 105, .	1.5	101
133	Transmission electron microscopy analysis of secondary phases in Cu2ZnSnS4 thin film solar cells. Materials Research Society Symposia Proceedings, 2014, 1670, 83.	0.1	Ο
134	Cu ₂ ZnSnS ₄ thin film solar cell fabricated by magnetron sputtering and sulfurization. Materials Research Society Symposia Proceedings, 2014, 1638, 1.	0.1	1
135	In situ prepared Cu2ZnSnS4 ultrathin film counter electrode in dye-sensitized solar cells. Materials Letters, 2014, 121, 241-243.	1.3	19
136	Al/Pb lightweight grids prepared by molten salt electroless plating for application in lead-acid batteries. Journal of Power Sources, 2014, 256, 294-300.	4.0	13
137	Dynamic analysis on metal selenide electrodeposition. Journal of Solid State Electrochemistry, 2014, 18, 1833-1845.	1.2	Ο
138	Improving the conversion efficiency of Cu2ZnSnS4 solar cell by low pressure sulfurization. Applied Physics Letters, 2014, 104, .	1.5	40
139	Impact of rapid thermal annealing of Mo coated soda lime glass substrate on device performance of evaporated Cu2ZnSnS4 thin film solar cells. Materials Letters, 2014, 125, 40-43.	1.3	20
140	Band alignments of different buffer layers (CdS, Zn(O,S), and In2S3) on Cu2ZnSnS4. Applied Physics Letters, 2014, 104, .	1.5	148
141	Enhancing the Cu2ZnSnS4 solar cell efficiency by back contact modification: Inserting a thin TiB2 intermediate layer at Cu2ZnSnS4/Mo interface. Applied Physics Letters, 2014, 104, .	1.5	131
142	Boosting Cu2ZnSnS4 solar cells efficiency by a thin Ag intermediate layer between absorber and back contact. Applied Physics Letters, 2014, 104, .	1.5	113
143	Fabrication of Cu ₂ ZnSnS ₄ solar cells with 5.1% efficiency via thermal decomposition and reaction using a non-toxic sol–gel route. Journal of Materials Chemistry A, 2014, 2, 500-509.	5.2	249
144	Improving Cu ₂ ZnSnS ₄ (CZTS) solar cell performance by an ultrathin ZnO intermediate layer between CZTS absorber and Mo back contact. Physica Status Solidi - Rapid Research Letters, 2014, 8, 966-970.	1.2	48

#	Article	IF	CITATIONS
145	Novel phosphorus-doped PbO2–MnO2 bicontinuous electrodes for oxygen evolution reaction. RSC Advances, 2014, 4, 24020.	1.7	43
146	The electrochemical self-assembly of hierarchical dendritic Bi2Se3 nanostructures. CrystEngComm, 2014, 16, 2823.	1.3	20
147	Effects of hydrogen peroxide on electrodeposition of Cu(In,Ga)Se 2 thin films and band gap controlling. Electrochimica Acta, 2014, 142, 208-214.	2.6	12
148	CuSbS2 Nanocrystals Applying in Organic-Inorganic Hybrid Photodetectors. ECS Solid State Letters, 2014, 3, Q41-Q43.	1.4	10
149	Hydrogen evolution inhibition with diethylenetriamine modification of activated carbon for a lead-acid battery. RSC Advances, 2014, 4, 33574-33577.	1.7	50
150	Characterization of nano-lead-doped active carbon and its application in lead-acid battery. Journal of Power Sources, 2014, 270, 332-341.	4.0	72
151	Flexible Cu ₂ ZnSnS ₄ solar cells based on successive ionic layer adsorption and reaction method. RSC Advances, 2014, 4, 17703-17708.	1.7	39
152	Colloidal synthesis and characterisation of Cu ₃ SbSe ₃ nanocrystals. Journal of Materials Chemistry A, 2014, 2, 6363-6367.	5.2	38
153	Template-directed synthesis of ordered iron pyrite (FeS2) nanowires and nanotubes arrays. Journal of Sol-Gel Science and Technology, 2014, 72, 100-105.	1.1	15
154	Improvement of Mo/Cu2ZnSnS4 interface for Cu2ZnSnS4 (CZTS) thin film solar cell application. Materials Research Society Symposia Proceedings, 2014, 1638, 1.	0.1	5
155	Colloidal synthesis of Cu 2 FeSnSe 4 nanocrystals for solar energy conversion. Materials Letters, 2014, 136, 306-309.	1.3	16
156	Kesterite Cu2ZnSnS4 solar cell from sputtered Zn/(Cu & Sn) metal stack precursors. Journal of Alloys and Compounds, 2014, 610, 486-491.	2.8	29
157	Growth and characterization of Cu2ZnSnS4 photovoltaic thin films by electrodeposition and sulfurization. Journal of Alloys and Compounds, 2014, 610, 331-336.	2.8	32
158	Transmission electron microscopy analysis for the process of crystallization of \$ext{C}{{ext{u}}_{2}}ext{ZnSn}{{ext{S}}_{4}}\$ film from sputtered Zn/CuSn precursor. Nanotechnology, 2014, 25, 195701.	1.3	13
159	Inhibiting MoS2 formation by introducing a ZnO intermediate layer for Cu2ZnSnS4 solar cells. Materials Letters, 2014, 130, 87-90.	1.3	76
160	Electrodeposition and characterization of copper bismuth selenide semiconductor thin films. Electrochimica Acta, 2013, 87, 153-157.	2.6	32
161	An alternative route towards low-cost Cu2ZnSnS4 thin film solar cells. Surface and Coatings Technology, 2013, 232, 53-59.	2.2	74
162	Colloidal synthesis and characterizations of wittichenite copper bismuth sulphide nanocrystals. Nanoscale, 2013, 5, 1789.	2.8	55

#	Article	IF	CITATIONS
163	MoS ₂ Nanosheets: A Designed Structure with High Active Site Density for the Hydrogen Evolution Reaction. ACS Catalysis, 2013, 3, 2101-2107.	5.5	340
164	Hot-injection synthesis of Co0.85Se nanocrystals for photo-electrical application. Materials Letters, 2013, 108, 110-113.	1.3	10
165	Thermodynamic analysis on metal selenides electrodeposition. Journal of Alloys and Compounds, 2013, 557, 40-46.	2.8	14
166	Fabrication of pyrite FeS2 thin films by sulfurizing oxide precursor films deposited via successive ionic layer adsorption and reaction method. Thin Solid Films, 2013, 542, 123-128.	0.8	26
167	Synthesis and characterization of multicomponent Cu2(FexZn1â^x)SnS4 nanocrystals with tunable band gap and structure. Journal of Materials Chemistry A, 2013, 1, 5402.	5.2	65
168	Preparation and Characterization of AgSbSe ₂ Thin Films by Electrodeposition. Journal of the Electrochemical Society, 2013, 160, D578-D582.	1.3	7
169	Photoelectrochemical Deposition of CuInSe2 Thin Films. Electrochemical and Solid-State Letters, 2012, 15, D19.	2.2	5
170	Structural and Optical Properties of Electrodeposited Bi2-xSbxSe3 Thin Films. ECS Solid State Letters, 2012, 1, Q29-Q31.	1.4	11
171	Solution-based synthesis of chalcostibite (CuSbS2) nanobricks for solar energy conversion. RSC Advances, 2012, 2, 10481.	1.7	67
172	Preparation of Cu2ZnSnS4 thin films by sulfurizing stacked precursor thin films via successive ionic layer adsorption and reaction method. Applied Surface Science, 2012, 258, 7678-7682.	3.1	63
173	Fabrication of ternary Cu–Sn–S sulfides by a modified successive ionic layer adsorption and reaction (SILAR) method. Journal of Materials Chemistry, 2012, 22, 16346.	6.7	141
174	Synthesis and characterizations of quaternary Cu2FeSnS4 nanocrystals. Chemical Communications, 2012, 48, 2603.	2.2	137
175	Preparation and characterization of Sb2Se3 thin films by electrodeposition and annealing treatment. Applied Surface Science, 2012, 261, 510-514.	3.1	79
176	Fabrication of Cu ₂ ZnSnS ₄ nanowires and nanotubes based on AAO templates. CrystEngComm, 2012, 14, 782-785.	1.3	50
177	Growth and characterization of CuSbSe2 thin films prepared by electrodeposition. Electrochimica Acta, 2012, 76, 480-486.	2.6	45
178	Platelike WO3 from hydrothermal RF sputtered tungsten thin films for photoelectrochemical water oxidation. Materials Letters, 2012, 84, 41-43.	1.3	27
179	One-step electrodeposition of CuGaSe2 thin films. Thin Solid Films, 2012, 520, 2781-2784.	0.8	21
180	Electrodeposition of antimony selenide thin films from aqueous acid solutions. Journal of Electroanalytical Chemistry, 2012, 671, 73-79.	1.9	35

#	Article	IF	CITATIONS
181	Photoelectrochemical Behavior of Electrodeposited CoSe Thin Films. Applied Physics Express, 2011, 4, 071201.	1.1	14
182	Preparation of Cu(In,Ga)Se2 thin films by pulse electrodeposition. Journal of Alloys and Compounds, 2011, 509, L129-L133.	2.8	34
183	Preparation and characterization of Bi-doped antimony selenide thin films by electrodeposition. Electrochimica Acta, 2011, 56, 8597-8602.	2.6	23
184	Effects of Cu/In ratio of electrodeposited precursor on post-sulfurization process in fabricating quaternary CuIn(S,Se)2 thin films. Applied Surface Science, 2011, 257, 8360-8365.	3.1	8
185	Preparation and characterization of Bi2Se3 nanowires by electrodeposition. Electrochimica Acta, 2011, 56, 5085-5089.	2.6	10
186	Effects of sodium sulfamate on electrodeposition of Cu(In,Ga)Se2 thin film. Journal of Electroanalytical Chemistry, 2011, 651, 191-196.	1.9	30
187	Incorporation Mechanism of Indium and Gallium during Electrodeposition of Cu(In,Ga)Se2 Thin Film. Journal of the Electrochemical Society, 2011, 158, D704.	1.3	27
188	Cu ₂ Si _{<i>x</i>} Sn _{1â^'<i>x</i>} S ₃ Thin Films Prepared by Reactive Magnetron Sputtering For Low-Cost Thin Film Solar Cells. Chinese Physics Letters, 2011, 28, 108801.	1.3	5
189	One-Step Electrodeposition and Annealing of CuSbSe2 Thin Films. Electrochemical and Solid-State Letters, 2011, 15, D11-D13.	2.2	26
190	Preparation and Characterization of Co-Se Thin Films by Electrodeposition. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2011, 26, 403-410.	0.6	6
191	Structure and Electrical Property of CuInS ₂ Thin Films Deposited by DC Reactive Magnetron Sputtering. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2011, 26, 1287-1292.	0.6	1
192	Nucleation and growth of selenium electrodeposition onto tin oxide electrode. Journal of Electroanalytical Chemistry, 2010, 639, 187-192.	1.9	80
193	In situ growth of Cu2ZnSnS4 thin films by reactive magnetron co-sputtering. Solar Energy Materials and Solar Cells, 2010, 94, 2431-2434.	3.0	200
194	Growth and Characterization of Cu[sub 2]ZnSnS[sub 4] Thin Films by DC Reactive Magnetron Sputtering for Photovoltaic Applications. Electrochemical and Solid-State Letters, 2010, 13, H379.	2.2	46
195	Electrodeposition of Cobalt Selenide Thin Films. Journal of the Electrochemical Society, 2010, 157, D523.	1.3	40
196	Characterization of chemical bath deposited CdS thin films at different deposition temperature. Journal of Alloys and Compounds, 2010, 493, 305-308.	2.8	200
197	Characterization of CulnS <inf>2</inf> thin films prepared by one-step DC reactive sputtering. , 2009, , .		0
198	Cyclic voltammetry study of electrodeposition of Cu(In,Ga)Se2 thin films. Electrochimica Acta, 2009, 54, 3004-3010.	2.6	79

#	Article	IF	CITATIONS
199	Electrodeposition-Based Preparation of Cu(In,Ga)(Se,S)[sub 2] Thin Films. Electrochemical and Solid-State Letters, 2009, 12, D65.	2.2	7
200	Pulse-plating electrodeposition and annealing treatment of CuInSe2 films. Transactions of Nonferrous Metals Society of China, 2008, 18, 884-889.	1.7	16
201	Kesterite Cu ₂ ZnSnS _{4-x} Se _x Thin Film Solar Cells. , 0, , .		0