
Sung-Gyu Park

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2672508/publications.pdf Version: 2024-02-01

SUNC-CVIL DADK

#	Article	IF	CITATIONS
1	Charge-transfer-based Gas Sensing Using Atomic-layer MoS2. Scientific Reports, 2015, 5, 8052.	1.6	489
2	Chemical Sensing of 2D Graphene/MoS ₂ Heterostructure device. ACS Applied Materials & Interfaces, 2015, 7, 16775-16780.	4.0	375
3	Graphene-based gas sensor: metal decoration effect and application to a flexible device. Journal of Materials Chemistry C, 2014, 2, 5280-5285.	2.7	198
4	Ultrasmooth, extremely deformable and shape recoverable Ag nanowire embedded transparent electrode. Scientific Reports, 2014, 4, 4788.	1.6	194
5	SERS imaging-based aptasensor for ultrasensitive and reproducible detection of influenza virus A. Biosensors and Bioelectronics, 2020, 167, 112496.	5.3	117
6	Sensitive Detection of SARS-CoV-2 Using a SERS-Based Aptasensor. ACS Sensors, 2021, 6, 2378-2385.	4.0	109
7	Nanostructured plasmonic substrates for use as SERS sensors. Nano Convergence, 2016, 3, 18.	6.3	99
8	Thermoresponsive Hydrogel Photonic Crystals by Threeâ€Dimensional Holographic Lithography. Advanced Materials, 2008, 20, 3061-3065.	11.1	98
9	Surface Energyâ€Controlled SERS Substrates for Molecular Concentration at Plasmonic Nanogaps. Advanced Functional Materials, 2017, 27, 1703376.	7.8	84
10	A Wearable Surface-Enhanced Raman Scattering Sensor for Label-Free Molecular Detection. ACS Applied Materials & Interfaces, 2021, 13, 3024-3032.	4.0	70
11	3D Hybrid Plasmonic Nanomaterials for Highly Efficient Optical Absorbers and Sensors. Advanced Materials, 2015, 27, 4290-4295.	11.1	69
12	M13 Bacteriophage/Silver Nanowire Surface-Enhanced Raman Scattering Sensor for Sensitive and Selective Pesticide Detection. ACS Applied Materials & Interfaces, 2018, 10, 10388-10397.	4.0	69
13	A facile low-cost paper-based SERS substrate for label-free molecular detection. Sensors and Actuators B: Chemical, 2019, 291, 369-377.	4.0	68
14	Sensitive and Reproducible Immunoassay of Multiple Mycotoxins Using Surfaceâ€Enhanced Raman Scattering Mapping on 3D Plasmonic Nanopillar Arrays. Small, 2018, 14, e1801623.	5.2	67
15	Holographic fabrication of three-dimensional nanostructures for microfluidic passive mixing. Lab on A Chip, 2009, 9, 3144.	3.1	66
16	Bioinspired Holographically Featured Superhydrophobic and Supersticky Nanostructured Materials. Langmuir, 2010, 26, 1468-1472.	1.6	58
17	Cu ₂ O Inverse Woodpile Photonic Crystals by Prism Holographic Lithography and Electrodeposition. Advanced Materials, 2011, 23, 2749-2752.	11.1	55
18	Holographic fabrication of photonic nanostructures for optofluidic integration. Lab on A Chip, 2008, 8, 388.	3.1	54

#	Article	IF	CITATIONS
19	Culture-Free Detection of Bacterial Pathogens on Plasmonic Nanopillar Arrays Using Rapid Raman Mapping. ACS Applied Materials & Interfaces, 2018, 10, 6831-6840.	4.0	54
20	Shape Control of Ag Nanostructures for Practical SERS Substrates. ACS Applied Materials & Interfaces, 2013, 5, 243-248.	4.0	50
21	Standingâ€Waveâ€Assisted Creation of Nanopillar Arrays with Vertically Integrated Nanogaps for SERSâ€Active Substrates. Advanced Functional Materials, 2015, 25, 4681-4688.	7.8	49
22	Selfâ€Assembly of Nanoparticle‣piked Pillar Arrays for Plasmonic Biosensing. Advanced Functional Materials, 2019, 29, 1904257.	7.8	47
23	3D Hierarchical Architectures Prepared by Single Exposure Through a Highly Durable Colloidal Phase Mask. Advanced Materials, 2014, 26, 1422-1426.	11.1	45
24	PCR-coupled Paper-based Surface-enhanced Raman Scattering (SERS) Sensor for Rapid and Sensitive Detection of Respiratory Bacterial DNA. Sensors and Actuators B: Chemical, 2021, 326, 128802.	4.0	43
25	SERSâ€Activeâ€Charged Microgels for Size―and Chargeâ€Selective Molecular Analysis of Complex Biological Samples. Small, 2018, 14, e1802520.	5.2	40
26	Anisotropic wetting and superhydrophobicity on holographically featured 3D nanostructured surfaces. Soft Matter, 2012, 8, 4567.	1.2	39
27	Perfectly Hydrophobic Surfaces with Patterned Nanoneedles of Controllable Features. Langmuir, 2010, 26, 5295-5299.	1.6	36
28	Metal Nanoparticle-Loaded Microgels with Selective Permeability for Direct Detection of Small Molecules in Biological Fluids. Chemistry of Materials, 2016, 28, 1559-1565.	3.2	34
29	Quantitative Structure and Property Analysis of Nanoporous Low Dielectric Constant SiCOH Thin Films. Journal of Physical Chemistry C, 2007, 111, 10848-10854.	1.5	32
30	Microfluidic Designing Microgels Containing Highly Concentrated Gold Nanoparticles for SERS Analysis of Complex Fluids. Small, 2019, 15, e1905076.	5.2	32
31	SERS-PCR assays of SARS-CoV-2 target genes using Au nanoparticles-internalized Au nanodimple substrates. Biosensors and Bioelectronics, 2022, 197, 113736.	5.3	32
32	Reproducible and Sensitive Plasmonic Sensing Platforms Based on Auâ€Nanoparticleâ€Internalized Nanodimpled Substrates. Advanced Functional Materials, 2021, 31, 2105703.	7.8	31
33	In situ electrochemical surface modification of Au electrodes for simultaneous label-free SERS detection of ascorbic acid, dopamine and uric acid. Sensors and Actuators B: Chemical, 2022, 353, 131196.	4.0	30
34	Surface-enhanced Raman scattering-based immunoassay for severe acute respiratory syndrome coronavirus 2. Biosensors and Bioelectronics, 2022, 202, 114008.	5.3	30
35	Plasmonic contact lens materials for glucose sensing in human tears. Sensors and Actuators B: Chemical, 2021, 344, 130297.	4.0	28
36	Optofluidics technology based on colloids and their assemblies. Microfluidics and Nanofluidics, 2008, 4, 129-144.	1.0	27

#	Article	IF	CITATIONS
37	Highly sensitive and on-site NO ₂ SERS sensors operated under ambient conditions. Analyst, The, 2018, 143, 3006-3010.	1.7	27
38	DNA electrophoresis in a nanofence array. Lab on A Chip, 2012, 12, 1463.	3.1	26
39	Uniform Microgels Containing Agglomerates of Silver Nanocubes for Molecular Size‧electivity and High SERS Activity. Small, 2017, 13, 1604048.	5.2	25
40	Bioinspired plasmonic nanoflower-decorated microneedle for label-free intradermal sensing. Applied Surface Science, 2021, 551, 149411.	3.1	24
41	3D multilayered plasmonic nanostructures with high areal density for SERS. RSC Advances, 2017, 7, 17898-17905.	1.7	22
42	Hydrophobic hBN-coated surface-enhanced Raman scattering sponge sensor for simultaneous separation and detection of organic pollutants. Journal of Materials Chemistry C, 2019, 7, 13059-13069.	2.7	22
43	Optically tunable arrayed structures for highly sensitive plasmonic detection via simplified holographic lithography. Journal of Materials Chemistry, 2012, 22, 4603.	6.7	21
44	Raman Scattering Mapping: Sensitive and Reproducible Immunoassay of Multiple Mycotoxins Using Surfaceâ€Enhanced Raman Scattering Mapping on 3D Plasmonic Nanopillar Arrays (Small 39/2018). Small, 2018, 14, 1870179.	5.2	21
45	Fabrication of highly uniform three-dimensional SERS substrates by control of wettability. Journal of Materials Chemistry C, 2013, 1, 426-431.	2.7	20
46	Fabrication of 3D ZnO hollow shell structures by prism holographic lithography and atomic layer deposition. Journal of Materials Chemistry C, 2014, 2, 1957-1961.	2.7	20
47	Analyte-concentrating 3D hybrid plasmonic nanostructures for use in highly sensitive chemical sensors. RSC Advances, 2016, 6, 92120-92126.	1.7	19
48	Fabrication of microparticles with controllable internal woodpile structures for highly efficient sensing applications. RSC Advances, 2012, 2, 2334.	1.7	18
49	Development of a robust, self-cleaning, amphiphobic, and electrically conductive coating on a flexible polymer substrate. Materials and Design, 2019, 182, 108023.	3.3	18
50	Early and direct detection of bacterial signaling molecules through one-pot Au electrodeposition onto paper-based 3D SERS substrates. Sensors and Actuators B: Chemical, 2022, 358, 131504.	4.0	18
51	Effect of in situ hydrogen plasma treatment on zinc oxide grown using low temperature atomic layer deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2013, 31, 01A124.	0.9	17
52	Holographic Fabrication of 3D Nanostructures. Advanced Materials Interfaces, 2018, 5, 1800330.	1.9	17
53	Compact Integration of TiO2 Nanoparticles into the Cross-Points of 3D Vertically Stacked Ag Nanowires for Plasmon-Enhanced Photocatalysis. Nanomaterials, 2019, 9, 468.	1.9	17
54	Organometallic hotspot engineering for ultrasensitive EC-SERS detection of pathogenic bacteria-derived DNAs. Biosensors and Bioelectronics, 2022, 210, 114325.	5.3	17

#	Article	IF	CITATIONS
55	Stackedâ€Disk Nanotower Arrays for Use as Omniphobic Surfaceâ€Enhanced Raman Scattering Substrates. Advanced Optical Materials, 2016, 4, 1893-1900.	3.6	16
56	Fabrication of Au-Decorated 3D ZnO Nanostructures as Recyclable SERS Substrates. IEEE Sensors Journal, 2016, 16, 3382-3386.	2.4	16
57	A cyclodextrin-decorated plasmonic gold nanosatellite substrate for selective detection of bipyridylium pesticides. Analyst, The, 2021, 146, 305-314.	1.7	16
58	Structural characterization of wavelength-dependent Raman scattering and laser-induced crystallization of silicon thin films. Thin Solid Films, 2013, 542, 388-392.	0.8	15
59	Plasmonic Microgels for Raman-Based Molecular Detection Created by Simultaneous Photoreduction and Photocross-linking. ACS Applied Materials & 2020, 12, 42188-48197.	4.0	14
60	SERS-based serodiagnosis of acute febrile diseases using plasmonic nanopopcorn microarray platforms. Biosensors and Bioelectronics, 2021, 192, 113525.	5.3	14
61	Dual length-scale nanotip arrays with controllable morphological features for highly sensitive SERS applications. Journal of Materials Chemistry, 2012, 22, 23650.	6.7	13
62	Fabrication of Three-Dimensional Nanostructured Titania Materials by Prism Holographic Lithography and the Sol–Gel Reaction. Langmuir, 2013, 29, 9620-9625.	1.6	13
63	Highly efficient hybrid thin-film solar cells using a solution-processed hole-blocking layer. Physical Chemistry Chemical Physics, 2013, 15, 1788-1792.	1.3	13
64	Encapsulation of 3D plasmonic nanostructures with ultrathin hydrogel skin for rapid and direct detection of toxic small molecules in complex fluids. Nanoscale, 2020, 12, 12942-12949.	2.8	13
65	SERS substrates based on self-organized dimple nanostructures on polyethylene naphthalate films produced via oxygen ion beam sputtering. Applied Surface Science, 2022, 572, 151452.	3.1	13
66	Doping-free silicon thin film solar cells using a vanadium pentoxide window layer and a LiF/Al back electrode. Applied Physics Letters, 2013, 103, .	1.5	12
67	3D-assembled Ag nanowires for use in plasmon-enhanced spectroscopic sensors. Applied Spectroscopy Reviews, 2019, 54, 325-347.	3.4	12
68	Plasmonic hotspot engineering of Ag-coated polymer substrates with high reproducibility and photothermal stability. Sensors and Actuators B: Chemical, 2022, 354, 131110.	4.0	12
69	Efficient Hydrogenated Amorphous Silicon Thin-Film Solar Cells Using Zinc Oxide Deposited by Atomic Layer Deposition as a Protective Interfacial Layer. Journal of Physical Chemistry C, 2012, 116, 23231-23235.	1.5	11
70	Rapid and sensitive multiplex molecular diagnosis of respiratory pathogens using plasmonic isothermal RPA array chip. Biosensors and Bioelectronics, 2021, 182, 113167.	5.3	11
71	Multicolor patterning using holographic woodpile photonic crystals at visible wavelengths. Nanoscale, 2013, 5, 4110.	2.8	10
72	Tethered molecular redox capacitors for nanoconfinement-assisted electrochemical signal amplification. Nanoscale, 2020, 12, 3668-3676.	2.8	10

#	Article	IF	CITATIONS
73	Highly Sensitive and Selective Nanogap-Enhanced SERS Sensing Platform. Nanomaterials, 2019, 9, 619.	1.9	9
74	Simple Fabrication of Transparent, Colorless, and Self-Disinfecting Polyethylene Terephthalate Film via Cold Plasma Treatment. Nanomaterials, 2020, 10, 949.	1.9	9
75	Nanoconfined 3D redox capacitor-based electrochemical sensor for ultrasensitive monitoring of metabolites in bacterial communication. Sensors and Actuators B: Chemical, 2021, 345, 130427.	4.0	9
76	In Situ Electrodeposition of Gold Nanostructures in 3D Ultraâ€Thin Hydrogel Skins for Direct Molecular Detection in Complex Mixtures with High Sensitivity. Laser and Photonics Reviews, 2021, 15, 2100316.	4.4	9
77	Fabrication and near-field visualization of a wafer-scale dense plasmonic nanostructured array. RSC Advances, 2018, 8, 6444-6451.	1.7	8
78	Direct visualization of a surface-enhanced Raman spectroscopy nano-gap via electrostatic force microscopy: Dependence on charge transfer from the underlying surface nano-gap distance. Applied Surface Science, 2019, 479, 874-878.	3.1	8
79	Hydrogel-Assisted 3D Volumetric Hotspot for Sensitive Detection by Surface-Enhanced Raman Spectroscopy. International Journal of Molecular Sciences, 2022, 23, 1004.	1.8	8
80	Ratchet nanofiltration of DNA. Lab on A Chip, 2013, 13, 3741.	3.1	7
81	3D nanoporous plasmonic chips for extremely sensitive NO ₂ detection. Analyst, The, 2019, 144, 7162-7167.	1.7	7
82	Characterization of microcrystalline silicon thin film solar cells prepared by high working pressure plasma-enhanced chemical vapor deposition. Journal of Electroceramics, 2014, 33, 149-154.	0.8	5
83	Smallâ€Volume Plasmonic Microwell Array with 3D Hierarchical Nanomaterials for Plasmonâ€Enhanced Fluorescence Immunoassay. Advanced NanoBiomed Research, 2021, 1, 2000015.	1.7	5
84	Quasi-3D Plasmonic Nanowell Array for Molecular Enrichment and SERS-Based Detection. Nanomaterials, 2020, 10, 939.	1.9	3
85	Dual synergistic modulation of photo-induced electron transfer processes between molecules and gold nanopillars for ultrasensitive plasmon-enhanced Raman scattering. Journal of Materials Chemistry C, 2021, 9, 8842-8848.	2.7	2
86	Electrochemical Synthesis of 3D Plasmonicâ€Molecule Nanocomposite Materials for In Situ Labelâ€Free Molecular Detections. Advanced Materials Interfaces, 2021, 8, 2101201.	1.9	2
87	Reproducible and Sensitive Plasmonic Sensing Platforms Based on Auâ€Nanoparticleâ€Internalized Nanodimpled Substrates (Adv. Funct. Mater. 49/2021). Advanced Functional Materials, 2021, 31, 2170366.	7.8	2
88	Three-Dimensional Hot-Volume Plasmonic Gold Nanoreactor Array for Ultrasensitive Immunoassays. ACS Applied Nano Materials, 2022, 5, 4269-4280.	2.4	2
89	Hierarchical Structures: 3D Hierarchical Architectures Prepared by Single Exposure Through a Highly Durable Colloidal Phase Mask (Adv. Mater. 9/2014). Advanced Materials, 2014, 26, 1421-1421.	11.1	1
90	Electrochemical Synthesis of 3D Plasmonicâ€Molecule Nanocomposite Materials for In Situ Labelâ€Free Molecular Detections (Adv. Mater. Interfaces 21/2021). Advanced Materials Interfaces, 2021, 8, .	1.9	0