
Laura E Nagy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2672492/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Kupffer Cells in the Liver. , 2013, 3, 785-797.		466
2	Standard Definitions and Common Data Elements for Clinical Trials in Patients With Alcoholic Hepatitis: Recommendation From the NIAAA Alcoholic Hepatitis Consortia. Gastroenterology, 2016, 150, 785-790.	1.3	387
3	Absence of receptor interacting protein kinase 3 prevents ethanol-induced liver injury. Hepatology, 2013, 57, 1773-1783.	7.3	266
4	Inflammatory pathways in alcoholic steatohepatitis. Journal of Hepatology, 2019, 70, 249-259.	3.7	238
5	Inflammation in Alcoholic Liver Disease. Annual Review of Nutrition, 2012, 32, 343-368.	10.1	229
6	Molecular Mechanism for Adiponectin-dependent M2 Macrophage Polarization. Journal of Biological Chemistry, 2011, 286, 13460-13469.	3.4	220
7	Recent Insights into the Role of the Innate Immune System in the Development of Alcoholic Liver Disease. Experimental Biology and Medicine, 2003, 228, 882-890.	2.4	205
8	Innate immunity in alcoholic liver disease. American Journal of Physiology - Renal Physiology, 2011, 300, G516-G525.	3.4	191
9	Chronic ethanol feeding increases activation of NADPH oxidase by lipopolysaccharide in rat Kupffer cells: role of increased reactive oxygen in LPS-stimulated ERK1/2 activation and TNF-Â production. Journal of Leukocyte Biology, 2006, 79, 1348-1356.	3.3	174
10	Obesity, diabetes mellitus, and liver fibrosis. American Journal of Physiology - Renal Physiology, 2011, 300, G697-G702.	3.4	164
11	Caspase-1 as a Central Regulator of High Fat Diet-Induced Non-Alcoholic Steatohepatitis. PLoS ONE, 2013, 8, e56100.	2.5	154
12	Differential Contributions of C3, C5, and Decay-Accelerating Factor to Ethanol-Induced Fatty Liver in Mice. Gastroenterology, 2007, 132, 1117-1126.	1.3	141
13	Linking Pathogenic Mechanisms of Alcoholic Liver Disease WithÂClinical Phenotypes. Gastroenterology, 2016, 150, 1756-1768.	1.3	136
14	The anti-inflammatory effects of adiponectin are mediated via a heme oxygenase-1-dependent pathway in rat Kupffer cells. Hepatology, 2010, 51, 1420-1429.	7.3	129
15	MOLECULAR ASPECTS OF ALCOHOL METABOLISM: Transcription Factors Involved in Early Ethanol-Induced Liver Injury. Annual Review of Nutrition, 2004, 24, 55-78.	10.1	128
16	Adiponectin normalizes LPS-stimulated TNF-α production by rat Kupffer cells after chronic ethanol feeding. American Journal of Physiology - Renal Physiology, 2006, 290, G998-G1007.	3.4	127
17	Receptor interacting protein 3 protects mice from highâ€fat dietâ€induced liverÂinjury. Hepatology, 2016, 64, 1518-1533.	7.3	123
18	Alcohol-induced autophagy contributes to loss in skeletal muscle mass. Autophagy, 2014, 10, 677-690.	9.1	121

#	Article	IF	CITATIONS
19	Complement and Alcoholic Liver Disease: Role of C1q in the Pathogenesis of Ethanol-Induced Liver Injury in Mice. Gastroenterology, 2010, 139, 664-674.e1.	1.3	120
20	Prophylactic tributyrin treatment mitigates chronicâ€binge ethanolâ€induced intestinal barrier and liver injury. Journal of Gastroenterology and Hepatology (Australia), 2017, 32, 1587-1597.	2.8	107
21	Early Growth Response-1 Transcription Factor Is Essential for Ethanol-Induced Fatty Liver Injury in Mice. Gastroenterology, 2005, 128, 2066-2076.	1.3	102
22	Nutritional Control of mRNA Stability Is Mediated by a Conserved AU-rich Element That Binds the Cytoplasmic Shuttling Protein HuR. Journal of Biological Chemistry, 2002, 277, 41539-41546.	3.4	101
23	Immunological mechanisms and therapeutic targets of fatty liver diseases. Cellular and Molecular Immunology, 2021, 18, 73-91.	10.5	98
24	Taurine supplementation prevents ethanol-induced decrease in serum adiponectin and reduces hepatic steatosis in rats. Hepatology, 2009, 49, 1554-1562.	7.3	97
25	Stabilization of Tumor Necrosis Factor α mRNA by Chronic Ethanol. Journal of Biological Chemistry, 2001, 276, 41930-41937.	3.4	96
26	Chronic Ethanolâ€Induced Insulin Resistance Is Associated With Macrophage Infiltration Into Adipose Tissue and Altered Expression of Adipocytokines. Alcoholism: Clinical and Experimental Research, 2007, 31, 1581-1588.	2.4	96
27	Identification of a Cytochrome P4502E1/Bid/C1q-dependent Axis Mediating Inflammation in Adipose Tissue after Chronic Ethanol Feeding to Mice. Journal of Biological Chemistry, 2011, 286, 35989-35997.	3.4	96
28	MLKL-dependent signaling regulates autophagic flux in a murine model of non-alcohol-associated fatty liver and steatohepatitis. Journal of Hepatology, 2020, 73, 616-627.	3.7	96
29	Chronic Ethanol and Triglyceride Turnover in White Adipose Tissue in Rats. Journal of Biological Chemistry, 2007, 282, 28465-28473.	3.4	92
30	An early complement-dependent and TLR-4-independent phase in the pathogenesis of ethanol-induced liver injury in mice. Hepatology, 2009, 49, 1326-1334.	7.3	90
31	Tributyrin Supplementation Protects Mice from Acute Ethanol-Induced Gut Injury. Alcoholism: Clinical and Experimental Research, 2014, 38, 1489-1501.	2.4	90
32	Anti-inflammatory pathways and alcoholic liver disease: Role of an adiponectin/interleukin-10/heme oxygenase-1 pathway. World Journal of Gastroenterology, 2010, 16, 1330.	3.3	88
33	Regulation of macrophage activation in alcoholic liver disease. Journal of Gastroenterology and Hepatology (Australia), 2007, 22, S53-6.	2.8	87
34	Mechanisms for the antiâ€inflammatory effects of adiponectin in macrophages. Journal of Gastroenterology and Hepatology (Australia), 2008, 23, S50-3.	2.8	82
35	Adiponectin and Heme Oxygenase-1 Suppress TLR4/MyD88-Independent Signaling in Rat Kupffer Cells and in Mice after Chronic Ethanol Exposure. Journal of Immunology, 2010, 185, 4928-4937.	0.8	80
36	Ethanolâ€Induced Oxidative Stress via the CYP2E1 Pathway Disrupts Adiponectin Secretion from Adipocytes. Alcoholism: Clinical and Experimental Research, 2012, 36, 214-222.	2.4	77

#	Article	IF	CITATIONS
37	Exogenous thioredoxin prevents ethanol-induced oxidative damage and apoptosis in mouse liver. Hepatology, 2009, 49, 1709-1717.	7.3	76
38	Protective role of HO-1 and carbon monoxide in ethanol-induced hepatocyte cell death and liver injury in mice. Journal of Hepatology, 2014, 61, 1029-1037.	3.7	75
39	Chronic ethanol feeding to rats decreases adiponectin secretion by subcutaneous adipocytes. American Journal of Physiology - Endocrinology and Metabolism, 2007, 292, E621-E628.	3.5	73
40	Clinical Impact of Alcoholâ€Related Cirrhosis in the Next Decade: Estimates Based on Current Epidemiological Trends in the United States. Alcoholism: Clinical and Experimental Research, 2015, 39, 2085-2094.	2.4	70
41	Inhibition of Apoptosis Protects Mice from Ethanolâ€Mediated Acceleration of Early Markers of <scp>CC</scp> I ₄ â€Induced Fibrosis but not Steatosis or Inflammation. Alcoholism: Clinical and Experimental Research, 2012, 36, 1139-1147.	2.4	68
42	Macrophage migration inhibitory factor contributes to ethanol-induced liver injury by mediating cell injury, steatohepatitis, and steatosis. Hepatology, 2013, 57, 1980-1991.	7.3	66
43	MicroRNA 181bâ€3p and its target importin α5 regulate tollâ€like receptor 4 signaling in Kupffer cells and liver injury in mice in response to ethanol. Hepatology, 2017, 66, 602-615.	7.3	66
44	Chronic ethanol ingestion induces oxidative kidney injury through taurine-inhibitable inflammation. Free Radical Biology and Medicine, 2014, 69, 403-416.	2.9	64
45	Oxidative stress mediates ethanol-induced skeletal muscle mitochondrial dysfunction and dysregulated protein synthesis and autophagy. Free Radical Biology and Medicine, 2019, 145, 284-299.	2.9	63
46	Redox Signaling and the Innate Immune System in Alcoholic Liver Disease. Antioxidants and Redox Signaling, 2011, 15, 523-534.	5.4	62
47	Adenosine 2A Receptor Antagonist Prevented and Reversed Liver Fibrosis in a Mouse Model of Ethanol-Exacerbated Liver Fibrosis. PLoS ONE, 2013, 8, e69114.	2.5	60
48	Chronic Alcohol Exposure Increases Circulating Bioactive Oxidized Phospholipids. Journal of Biological Chemistry, 2010, 285, 22211-22220.	3.4	58
49	IRAKMâ€Mincle axis links cell death to inflammation: Pathophysiological implications for chronic alcoholic liver disease. Hepatology, 2016, 64, 1978-1993.	7.3	55
50	Glutamine supplementation attenuates ethanol-induced disruption of apical junctional complexes in colonic epithelium and ameliorates gut barrier dysfunction and fatty liver in mice. Journal of Nutritional Biochemistry, 2016, 27, 16-26.	4.2	52
51	The Role of Innate Immunity in Alcoholic Liver Disease. , 2015, 37, 237-50.		52
52	Chronic Ethanol Exposure Increases the Binding of HuR to the TNFα 3′-Untranslated Region in Macrophages. Journal of Biological Chemistry, 2003, 278, 38333-38341.	3.4	49
53	Hepatocyte-derived macrophage migration inhibitory factor mediates alcohol-induced liver injury in mice and patients. Journal of Hepatology, 2017, 67, 1018-1025.	3.7	48
54	Innate immunity and cell death in alcoholic liver disease: Role of cytochrome P4502E1. Redox Biology, 2014, 2, 929-935.	9.0	45

#	Article	IF	CITATIONS
55	Early growth response-1 attenuates liver injury and promotes hepatoprotection after carbon tetrachloride exposure in mice. Journal of Hepatology, 2010, 53, 655-662.	3.7	44
56	Hepatic Fibrosis Is Enhanced and Accompanied by Robust Oval Cell Activation after Chronic Carbon Tetrachloride Administration to Egr-1-Deficient Mice. American Journal of Pathology, 2010, 176, 2743-2752.	3.8	44
57	Programmed cell death in alcohol-associated liver disease. Clinical and Molecular Hepatology, 2020, 26, 618-625.	8.9	44
58	Macrophage migration inhibitory factor is required for recruitment of scar-associated macrophages during liver fibrosis. Journal of Leukocyte Biology, 2015, 97, 161-169.	3.3	43
59	Adiponectin as an Anti-fibrotic and Anti-inflammatory Adipokine in the Liver. Current Pathobiology Reports, 2015, 3, 243-252.	3.4	42
60	Layilin is critical for mediating hyaluronan 35 kDa-induced intestinal epithelial tight junction protein ZO-1 in vitro and in vivo. Matrix Biology, 2018, 66, 93-109.	3.6	41
61	ILâ€1 receptor antagonist plus pentoxifylline and zinc for severe alcoholâ€associated hepatitis. Hepatology, 2022, 76, 1058-1068.	7.3	41
62	Myeloperoxidase formation of PAF receptor ligands induces PAF receptor-dependent kidney injury during ethanol consumption. Free Radical Biology and Medicine, 2015, 86, 179-190.	2.9	40
63	Hyaluronic acid 35 normalizes TLR4 signaling in Kupffer cells from ethanol-fed rats via regulation of microRNA291b and its target Tollip. Scientific Reports, 2017, 7, 15671.	3.3	39
64	Regulation of Kupffer cell activity during chronic ethanol exposure: Role of adiponectin. Journal of Gastroenterology and Hepatology (Australia), 2006, 21, S30-S33.	2.8	35
65	Formation of γ-ketoaldehyde–protein adducts during ethanol-induced liver injury in mice. Free Radical Biology and Medicine, 2009, 47, 1526-1538.	2.9	35
66	Globular Adiponectin Inhibits Ethanol-Induced Reactive Oxygen Species Production through Modulation of NADPH Oxidase in Macrophages: Involvement of Liver Kinase B1/AMP-Activated Protein Kinase Pathway. Molecular Pharmacology, 2014, 86, 284-296.	2.3	34
67	Complement Factor D protects mice from ethanol-induced inflammation and liver injury. American Journal of Physiology - Renal Physiology, 2018, 315, G66-G79.	3.4	34
68	Early growth response-1 contributes to galactosamine/lipopolysaccharide-induced acute liver injury in mice. American Journal of Physiology - Renal Physiology, 2007, 293, G1124-G1133.	3.4	33
69	A genetic risk score and diabetes predict development of alcohol-related cirrhosis in drinkers. Journal of Hepatology, 2022, 76, 275-282.	3.7	33
70	Mice Lacking C1q Are Protected from High Fat Diet-induced Hepatic Insulin Resistance and Impaired Glucose Homeostasis. Journal of Biological Chemistry, 2013, 288, 22565-22575.	3.4	31
71	Ethanol sensitizes skeletal muscle to ammonia-induced molecular perturbations. Journal of Biological Chemistry, 2019, 294, 7231-7244.	3.4	31
72	Effect of Acid Suppressants on the Risk of COVID-19: A Propensity Score-Matched Study Using UK Biobank. Gastroenterology, 2021, 160, 455-458.e5.	1.3	31

#	Article	IF	CITATIONS
73	The non-transcriptional activity of IRF3 modulates hepatic immune cell populations in acute-on-chronic ethanol administration in mice. Journal of Hepatology, 2019, 70, 974-984.	3.7	30
74	GLUT4 vesicle trafficking in rat adipocytes after ethanol feeding: regulation by heterotrimeric G-proteins. Biochemical Journal, 2001, 354, 323-330.	3.7	29
75	Stabilization of tumor necrosis factor-alpha mRNA in macrophages in response to chronic ethanol exposure. Alcohol, 2004, 33, 229-233.	1.7	28
76	Differential role of MLKL in alcohol-associated and non–alcohol-associated fatty liver diseases in mice and humans. JCI Insight, 2021, 6, .	5.0	27
77	Moderate, chronic ethanol feeding exacerbates carbon tetrachloride–induced hepatic fibrosis via hepatocyteâ€specific hypoxiaâ€inducible factor 1 α. Pharmacology Research and Perspectives, 2014, 2, e00061.	2.4	25
78	Physiological processes underlying organ injury in alcohol abuse. American Journal of Physiology - Endocrinology and Metabolism, 2016, 311, E605-E619.	3.5	24
79	GLUT4 vesicle trafficking in rat adipocytes after ethanol feeding: regulation by heterotrimeric G-proteins. Biochemical Journal, 2001, 354, 323.	3.7	23
80	Ethanol stimulates glucose uptake and translocation of GLUT-4 in H9c2 myotubes via a Ca2+-dependent mechanism. American Journal of Physiology - Endocrinology and Metabolism, 2000, 279, E1358-E1365.	3.5	22
81	Anaphylatoxin Receptors C3aR and C5aR1 Are Important Factors That Influence the Impact of Ethanol on the Adipose Secretome. Frontiers in Immunology, 2018, 9, 2133.	4.8	22
82	MLKL contributes to Western diet-induced liver injury through inhibiting autophagy. Autophagy, 2020, 16, 1351-1352.	9.1	22
83	Mobilization of GLUT-4 from intracellular vesicles by insulin and K+ depolarization in cultured H9c2 myotubes. American Journal of Physiology - Endocrinology and Metabolism, 1999, 277, E259-E267.	3.5	21
84	Differential contribution of complement receptor C5aR in myeloid and non-myeloid cells in chronic ethanol-induced liver injury in mice. Molecular Immunology, 2016, 75, 122-132.	2.2	21
85	miRNAs Involved in M1/M2 Hyperpolarization Are Clustered and Coordinately Expressed in Alcoholic Hepatitis. Frontiers in Immunology, 2019, 10, 1295.	4.8	21
86	Ethanol dissociates hormone-stimulated cAMP production from inhibition of TNF-α production in rat Kupffer cells. American Journal of Physiology - Renal Physiology, 1999, 276, G98-G106.	3.4	20
87	Limited Excessive Voluntary Alcohol Drinking Leads to Liver Dysfunction in Mice. Alcoholism: Clinical and Experimental Research, 2017, 41, 345-358.	2.4	19
88	Functionally Diverse Inflammatory Responses in Peripheral and Liver Monocytes in Alcoholâ€Associated Hepatitis. Hepatology Communications, 2020, 4, 1459-1476.	4.3	19
89	Anaphylatoxin C5a modulates hepatic stellate cell migration. Fibrogenesis and Tissue Repair, 2014, 7, 9.	3.4	18
90	Novel Role of Macrophage Migration Inhibitory Factor in Upstream Control of the Unfolded Protein Response After Ethanol Feeding in Mice. Alcoholism: Clinical and Experimental Research, 2019, 43, 1439-1451.	2.4	18

#	Article	IF	CITATIONS
91	Inhibition of IRAK4 kinase activity improves ethanol-induced liver injury in mice. Journal of Hepatology, 2020, 73, 1470-1481.	3.7	18
92	Diagnostic and Prognostic Significance of Complement in Patients With Alcoholâ€Associated Hepatitis. Hepatology, 2021, 73, 983-997.	7.3	17
93	Soluble IgM links apoptosis to complement activation in early alcoholic liver disease in mice. Molecular Immunology, 2016, 72, 9-18.	2.2	16
94	Design and rationale of a multicenter defeat alcoholic steatohepatitis trial: (DASH) randomized clinical trial to treat alcohol-associated hepatitis. Contemporary Clinical Trials, 2020, 96, 106094.	1.8	16
95	Alcohol Consumption Is Associated with Poor Prognosis in Obese Patients with COVID-19: A Mendelian Randomization Study Using UK Biobank. Nutrients, 2021, 13, 1592.	4.1	16
96	Alcoholic-Hepatitis, Links to Brain and Microbiome: Mechanisms, Clinical and Experimental Research. Biomedicines, 2020, 8, 63.	3.2	15
97	Synergistic interaction between C5a and NOD2 signaling in the regulation of chemokine expression in RAW 264.7 macrophages. Advances in Bioscience and Biotechnology (Print), 2013, 04, 30-37.	0.7	15
98	Macrophageâ€derived MLKL in alcoholâ€associated liver disease: Regulation of phagocytosis. Hepatology, 2023, 77, 902-919.	7.3	15
99	Cot/tpl2 participates in the activation of macrophages by adiponectin. Journal of Leukocyte Biology, 2014, 95, 917-930.	3.3	13
100	TH17 cells promote CNS inflammation by sensing danger signals via Mincle. Nature Communications, 2022, 13, 2406.	12.8	13
101	Alternative complement pathway component Factor D contributes to efficient clearance of tissue debris following acute CCl4-induced injury. Molecular Immunology, 2015, 64, 9-17.	2.2	12
102	Nontranscriptional Activity of Interferon Regulatory Factor 3 Protects Mice From Highâ€Fat Dietâ€Induced Liver Injury. Hepatology Communications, 2019, 3, 1626-1641.	4.3	12
103	Non-coding RNA crosstalk with nuclear receptors in liver disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2021, 1867, 166083.	3.8	12
104	Ethanol and Membrane Protein Trafficking: Diverse Mechanisms of Ethanol Action. Alcoholism: Clinical and Experimental Research, 2002, 26, 287-293.	2.4	11
105	Roles of Kupffer Cells in Alcoholic Liver Disease. Alcoholism: Clinical and Experimental Research, 2005, 29, 1116-1120.	2.4	11
106	Inflammatory PAF Receptor Signaling Initiates Hedgehog Signaling and Kidney Fibrogenesis During Ethanol Consumption. PLoS ONE, 2015, 10, e0145691.	2.5	11
107	Genetic Resistance to Liver Fibrosis on A/J Mouse Chromosome 17. Alcoholism: Clinical and Experimental Research, 2013, 37, 1668-1679.	2.4	10
108	Hepatic Immune System: Adaptations to Alcohol. Handbook of Experimental Pharmacology, 2018, 248, 347-367.	1.8	9

#	Article	IF	CITATIONS
109	Hepatic Knockdown of Splicing Regulator Slu7 Ameliorates Inflammation and Attenuates Liver Injury in Ethanol-Fed Mice. American Journal of Pathology, 2018, 188, 1807-1819.	3.8	9
110	Safety of Hyaluronan 35 in Healthy Human Subjects: A Pilot Study. Nutrients, 2019, 11, 1135.	4.1	8
111	Methods to Investigate the Effects of Chronic Ethanol on Adipocytes. Methods in Molecular Biology, 2008, 447, 357-366.	0.9	7
112	Not All Industry-Affiliated Groups Are Created Equal: Some Conditions Under Which Science and Industry May Coexist Ethically and for the Public Good. Journal of Studies on Alcohol and Drugs, 2016, 77, 541-544.	1.0	7
113	Specifically Sized Hyaluronan (35ÂkDa) Prevents Ethanolâ€Induced Disruption of Epithelial Tight Junctions Through a layilinâ€Dependent Mechanism in Cacoâ€2 Cells. Alcoholism: Clinical and Experimental Research, 2019, 43, 1848-1858.	2.4	7
114	Natural History of Alcohol-Associated Liver Disease: Understanding the Changing Landscape of Pathophysiology and Patient Care. Gastroenterology, 2022, 163, 840-851.	1.3	7
115	Myeloidâ€MyD88 Contributes to Ethanolâ€Induced Liver Injury in Mice Linking Hepatocellular Death to Inflammation. Alcoholism: Clinical and Experimental Research, 2017, 41, 719-726.	2.4	6
116	Role of MIF in coordinated expression of hepatic chemokines in patients with alcohol-associated hepatitis. JCI Insight, 2021, 6, .	5.0	5
117	The long and the small collide: LncRNAs and small heterodimer partner (SHP) in liver disease. Molecular and Cellular Endocrinology, 2021, 528, 111262.	3.2	5
118	Myeloid Mixed Lineage Kinase 3 Contributes to Chronic Ethanol-Induced Inflammation and Hepatocyte Injury in Mice. Gene Expression, 2016, 17, 61-77.	1.2	4
119	Identification of a MicroRNAâ€E3 Ubiquitin Ligase Regulatory Network for Hepatocyte Death in Alcoholâ€Associated Hepatitis. Hepatology Communications, 2021, 5, 830-845.	4.3	3
120	Role of MIF in Hepatic Inflammatory Diseases and Fibrosis. , 2017, , 109-134.		3
121	Phosphoproteomics identifies pathways underlying the role of receptorâ€interaction protein kinase 3 in alcoholâ€associated liver disease and uncovers apoptosis signalâ€regulating kinase 1 as a target. Hepatology Communications, 2022, 6, 2022-2041.	4.3	3
122	Genetic Contribution to Alcoholic Steatohepatitis. FASEB Journal, 2008, 22, 1037.10.	0.5	0
123	Genetic difference between A/J and C57BL/6J mice response to chronic alcohol consumption FASEB Journal, 2009, 23, 981.4.	0.5	0