Takehiko Mori

List of Publications by Citations

Source: https://exaly.com/author-pdf/2671711/takehiko-mori-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

364 9,264 45 79 g-index

383 9,772 4.4 6.13 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
364	The Intermolecular Interaction of Tetrathiafulvalene and Bis(ethylenedithio)tetrathiafulvalene in Organic Metals. Calculation of Orbital Overlaps and Models of Energy-band Structures. <i>Bulletin of the Chemical Society of Japan</i> , 1984 , 57, 627-633	5.1	639
363	Systematic study of the electronic state in Eype BEDT-TTF organic conductors by changing the electronic correlation. <i>Physical Review B</i> , 1998 , 57, 12023-12029	3.3	287
362	Structural Genealogy of BEDT-TTF-Based Organic Conductors II. Inclined Molecules: ## and Phases. Bulletin of the Chemical Society of Japan, 1999, 72, 179-197	5.1	271
361	Structural Genealogy of BEDT-TTF-Based Organic Conductors I. Parallel Molecules: and Phases. Bulletin of the Chemical Society of Japan, 1998, 71, 2509-2526	5.1	267
360	Crystal and Electronic Structures of (BEDTIITF)2[MHg(SCN)4](M=K and NH4). <i>Bulletin of the Chemical Society of Japan</i> , 1990 , 63, 2183-2190	5.1	243
359	BAND STRUCTURES OF TWO TYPES OF (BEDT-TTF)2I3. Chemistry Letters, 1984, 13, 957-960	1.7	241
358	Estimation of d-Interactions in Organic Conductors Including Magnetic Anions. <i>Journal of the Physical Society of Japan</i> , 2002 , 71, 826-844	1.5	147
357	A Novel Type of Organic Semiconductors. Molecular Fastener. <i>Chemistry Letters</i> , 1986 , 15, 1263-1266	1.7	123
356	Electrical conductivity, thermoelectric power, and ESR of a new family of molecular conductors, dicyanoquinonediimine-metal. <i>Physical Review B</i> , 1988 , 38, 5913-5923	3.3	116
355	(DTEDT)[Au(CN)2]0.4: An Organic Superconductor Based on the Novel Electron Framework of Vinylogous Bis-Fused Tetrathiafulvalene. <i>Angewandte Chemie International Edition in English</i> , 1995 , 34, 1222-1225		112
354	Naphthodithiophenediimide B enzobisthiadiazole-Based Polymers: Versatile n-Type Materials for Field-Effect Transistors and Thermoelectric Devices. <i>Macromolecules</i> , 2017 , 50, 857-864	5.5	111
353	Organic conductors with unusual band fillings. <i>Chemical Reviews</i> , 2004 , 104, 4947-70	68.1	107
352	Structural Genealogy of BEDT-TTF-Based Organic Conductors III. Twisted Molecules: and Phases. Bulletin of the Chemical Society of Japan, 1999 , 72, 2011-2027	5.1	107
351	Structural aspects of the ambient-pressure BEDT-TTF superconductors. <i>Journal of the American Chemical Society</i> , 1993 , 115, 11319-11327	16.4	100
350	(Tetrathiafulvalene)(tetracyanoquinodimethane) as a low-contact-resistance electrode for organic transistors. <i>Applied Physics Letters</i> , 2007 , 90, 193509	3.4	92
349	Crystal Structures and Electrical Properties of BEDT-TTF Coeipounds. <i>Molecular Crystals and Liquid Crystals</i> , 1984 , 107, 33-43		90
348	Non-Stripe Charge Order in the Phase Organic Conductors. <i>Journal of the Physical Society of Japan</i> , 2003 , 72, 1469-1475	1.5	87

347	Crystal Structure and Physical Properties of M = Rb and Tl Salts of (BEDT-TTF)2MM?(SCN)4[M? = Co, Zn]. Bulletin of the Chemical Society of Japan, 1998 , 71, 797-806	5.1	80
346	Large Dielectric Constant and Giant Nonlinear Conduction in the Organic Conductor E(BEDT-TTF)2CsZn(SCN)4. <i>Journal of the Physical Society of Japan</i> , 2004 , 73, 3364-3369	1.5	77
345	Estimation of Off-Site Coulomb Integrals and Phase Diagrams of Charge Ordered States in the Phase Organic Conductors. <i>Bulletin of the Chemical Society of Japan</i> , 2000 , 73, 2243-2253	5.1	77
344	Intermolecular energy-band dispersion in oriented thin films of bis(1,2,5-thiadiazolo)-p-quinobis(1,3-dithiole) by angle-resolved photoemission. <i>Journal of Chemical Physics</i> , 1994 , 100, 6969-6973	3.9	77
343	A plane-grating monochromator for 2 eV/hv/ll 50 eV. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1986 , 246, 264-266	5 ^{1.2}	75
342	Crystal Structures of Highly Conducting Iodine Complexes of TTM-TTP. <i>Bulletin of the Chemical Society of Japan</i> , 1994 , 67, 661-667	5.1	74
341	Superconductivity in (BEDT-TTF)3Cl22H2O. Solid State Communications, 1987, 64, 335-337	1.6	74
340	High performance ambipolar organic field-effect transistors based on indigo derivatives. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 9311-9317	7.1	71
339	Electrical properties and crystal structures of mercury (II) thiocyanate salts based upon BEDT?TTF with Li+, K+, NH+4, Rb+, and Cs+. <i>Solid State Communications</i> , 1990 , 74, 1261-1264	1.6	71
338	High-Performance n-Channel Organic Transistors Using High-Molecular-Weight Electron-Deficient Copolymers and Amine-Tailed Self-Assembled Monolayers. <i>Advanced Materials</i> , 2018 , 30, e1707164	24	70
337	Crystal Structures and Electrical Resistivities of Three-Component Organic Conductors: (BEDT-TTF)2MM?(SCN)4[M = K, Rb, Cs; M? = Co, Zn, Cd]. <i>Bulletin of the Chemical Society of Japan</i> , 1995 , 68, 1136-1144	5.1	69
336	A high-conductivity crystal containing a copper(I) coordination polymer bridged by the organic acceptor tanc. <i>Angewandte Chemie - International Edition</i> , 2006 , 45, 5144-7	16.4	66
335	Crystal Structures of M(DCNQIs)2(DCNQIs=N,N?-dicyanoquinonediimines; M=Li, Na, K, NH4, Cu, Ag). <i>Chemistry Letters</i> , 1987 , 16, 1579-1582	1.7	65
334	Stable metallic behavior and antiferromagnetic ordering of Fe(III) d spins in (EDO-TTFVO)2.FeCl4. Journal of the American Chemical Society, 2005 , 127, 14166-7	16.4	64
333	Suppressed Triplet Exciton Diffusion Due to Small Orbital Overlap as a Key Design Factor for Ultralong-Lived Room-Temperature Phosphorescence in Molecular Crystals. <i>Advanced Materials</i> , 2019 , 31, e1807268	24	64
332	Contact resistance of dibenzotetrathiafulvalene-based organic transistors with metal and organic electrodes. <i>Applied Physics Letters</i> , 2008 , 92, 023305	3.4	62
331	Rational Design of High-Mobility Semicrystalline Conjugated Polymers with Tunable Charge Polarity: Beyond Benzobisthiadiazole-Based Polymers. <i>Advanced Functional Materials</i> , 2017 , 27, 1604608	₈ 15.6	60
330	TRANSVERSE CONDUCTION AND METAL-INSULATOR TRANSITION IN E(BEDT-TTF)2PF6. <i>Chemistry Letters</i> , 1983 , 12, 581-584	1.7	59

329	Structure and Conducting Properties of BDT-TTP Salts. <i>Chemistry Letters</i> , 1994 , 23, 1653-1656	1.7	57
328	Pressure-Induced One-Dimensional Instability in (DMDCNQI)2Cu. <i>Journal of the Physical Society of Japan</i> , 1987 , 56, 3429-3431	1.5	56
327	Thermoelectric Power of Organic Superconductors Calculation on the Basis of the Tight-Binding Theory. <i>Journal of the Physical Society of Japan</i> , 1988 , 57, 3674-3677	1.5	55
326	Organic field-effect transistors based on new TTF-based liquid crystalline materials. <i>Synthetic Metals</i> , 2005 , 149, 219-223	3.6	52
325	Benzothienobenzothiophene-Based Molecular Conductors: High Conductivity, Large Thermoelectric Power Factor, and One-Dimensional Instability. <i>Journal of the American Chemical Society</i> , 2016 , 138, 3920-5	16.4	51
324	Crystal Structure and Physical Properties of (BDT-TTP)2ClO4. <i>Bulletin of the Chemical Society of Japan</i> , 1994 , 67, 2685-2689	5.1	50
323	A new ambient-pressure organic superonductor, E(BEDT-TTF)2Ag(CN)2H2O (TC=5.0 K). <i>Solid State Communications</i> , 1990 , 76, 35-37	1.6	50
322	A BEDT-TTF Complex Including a Magnetic Anion, (BEDT-TTF)3(MnCl4)2. <i>Bulletin of the Chemical Society of Japan</i> , 1988 , 61, 591-593	5.1	48
321	CRYSTAL AND BAND STRUCTURES OF AN ORGANIC CONDUCTOR & (BEDT-TTF)2AuBr2. <i>Chemistry Letters</i> , 1986 , 15, 1037-1040	1.7	46
320	New Semiconducting Polymers Based on Benzobisthiadiazole Analogues: Tuning of Charge Polarity in Thin Film Transistors via Heteroatom Substitution. <i>Macromolecules</i> , 2015 , 48, 4012-4023	5.5	45
319	Organic superconductor with an incommensurate anion structure: (MDTIISF)(AuI2)0.44. <i>Physical Review B</i> , 2002 , 65,	3.3	44
318	UNCAPPED ALKYLTHIO SUBSTITUTED TETRATHIAFULVALENES (TTCn-TTF) AND THEIR CHARGE TRANSFER COMPLEXES. <i>Chemistry Letters</i> , 1986 , 15, 441-444	1.7	44
317	Direct imaging of monovacancy-hydrogen complexes in a single graphitic layer. <i>Physical Review B</i> , 2014 , 89,	3.3	43
316	THE CRYSTAL STRUCTURES AND ELECTRICAL RESISTIVITIES OF (BEDT-TTF)3(ClO4)2AND (BEDT-TTF)2ClO4(C4H8O2). <i>Chemistry Letters</i> , 1984 , 13, 179-182	1.7	43
315	Ferromagnetic anomaly associated with the antiferromagnetic transitions in (donor)[Ni(mnt)2]-type charge-transfer salts. <i>Inorganic Chemistry</i> , 2004 , 43, 6075-82	5.1	42
314	Visualization of electronic states on atomically smooth graphitic edges with different types of hydrogen termination. <i>Physical Review B</i> , 2013 , 87,	3.3	41
313	Superconductivity in (BEDT?TTF)4Pt(CN) 4H2O. Solid State Communications, 1991, 80, 411-415	1.6	41
312	Hall-effect observation in the new organic semiconductor bis(1,2,5-thiadiazolo)-p-quinobis(1,3-dithiole)(BTQBT). <i>Journal of Materials Chemistry</i> , 1992 , 2, 115		41

(2009-1992)

311	Crystal and electronic structures of the organic superconductors, ?-(BEDT-TTF)2Cu(CN)[N(CN)2] and ?M(BEDT-TTF)2Cu2(CN)3. <i>Solid State Communications</i> , 1992 , 82, 101-105	1.6	41
310	Band-like transport down to 20 K in organic single-crystal transistors based on dioctylbenzothienobenzothiophene. <i>Applied Physics Letters</i> , 2015 , 106, 193303	3.4	40
309	Benzobisthiadiazole-based conjugated donor\(\text{Bcceptor polymers for organic thin film transistors:}\) effects of \(\text{Econjugated bridges on ambipolar transport.}\) Journal of Materials Chemistry C, \(\text{2015}\), 3, 1196-1	20 1 7	40
308	The first proton-conducting metallic ion-radical salts. <i>Angewandte Chemie - International Edition</i> , 2004 , 44, 292-5	16.4	40
307	New Organic Metals Based on Bis-Fused TTF Donors. <i>Molecular Crystals and Liquid Crystals</i> , 1996 , 284, 271-282		40
306	Crystal Structure of the Mixed-Stacked Salt of Bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF) and Tetracyanoquinodimethane (TCNQ). <i>Bulletin of the Chemical Society of Japan</i> , 1987 , 60, 402-404	5.1	40
305	Structural and Electrical Properties of (BEDT-TTF)3CI2(H2O)2. Chemistry Letters, 1987, 16, 1657-1660	1.7	40
304	Correlation of mobility and molecular packing in organic transistors based on cycloalkyl naphthalene diimides. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 5395	7.1	38
303	Conducting organic frameworks based on a main-group metal and organocyanide radicals. <i>Chemistry - A European Journal</i> , 2013 , 19, 3348-57	4.8	38
302	Comparison of p-type and n-type organic field-effect transistors using nickel coordination compounds. <i>Chemical Physics Letters</i> , 2006 , 421, 395-398	2.5	37
301	Intramolecular band mapping of n-CH3(CH2)34CH3 over the whole Brillouin zone by angle-resolved photoemission. <i>Chemical Physics Letters</i> , 1987 , 141, 485-488	2.5	37
300	Crystal Structure of ₹BEDT-TTF)2PF6. Chemistry Letters, 1983, 12, 759-762	1.7	37
299	A new organic superconductor beta-(meso-DMBEDT-TTF)2PF6. Chemical Communications, 2004, 2454-5	5.8	36
298	A vinylogue of bis-fused tetrathiafulvalene: novel Electron framework for two-dimensional organic metals. <i>Journal of Materials Chemistry</i> , 1995 , 5, 1571-1579		36
297	Charge-Transfer Complexes of Benzothienobenzothiophene with Tetracyanoquinodimethane and the n-Channel Organic Field-Effect Transistors. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 6561-6568	3.8	35
296	Air-stable n-channel organic field-effect transistors based on charge-transfer complexes including dimethoxybenzothienobenzothiophene and tetracyanoquinodimethane derivatives. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 5981-5987	7.1	35
295	D-A1-D-A2 Backbone Strategy for Benzobisthiadiazole Based n-Channel Organic Transistors: Clarifying the Selenium-Substitution Effect on the Molecular Packing and Charge Transport Properties in Electron-Deficient Polymers. <i>Advanced Functional Materials</i> , 2017 , 27, 1701486	15.6	35
294	Stabilization of organic field-effect transistors in hexamethylenetetrathiafulvalene derivatives substituted by bulky alkyl groups. <i>Journal of Materials Chemistry</i> , 2009 , 19, 6548		35

293	Structural and physical properties of a new organic superconductor, (BEDT-TTF)4Pd(CN)4H2O. <i>Solid State Communications</i> , 1992 , 82, 177-181	1.6	35
292	Microwave-assisted TCNE/TCNQ addition to poly(thienyleneethynylene) derivative for construction of donoracceptor chromophores. <i>Journal of Polymer Science Part A</i> , 2011 , 49, 1013-1020	2.5	34
291	Contact resistance and electrode material dependence of air-stable n-channel organic field-effect transistors using dimethyldicyanoquinonediimine (DMDCNQI). <i>Journal of Materials Chemistry</i> , 2008 , 18, 4165		33
290	Air stability of n-channel organic transistors based on nickel coordination compounds. <i>Organic Electronics</i> , 2007 , 8, 759-766	3.5	33
289	A metallic (EDT-DSDTFVSDS)2.FeBr4 salt: antiferromagnetic ordering of d spins of FeBr4- ions and anomalous magnetoresistance due to preferential pi-d interaction. <i>Journal of the American Chemical Society</i> , 2006 , 128, 11746-7	16.4	33
288	Crystal structures of AuCl2 salts of BIS(ethylenedithio)- tetrathiafulvalene(BEDT-TTF). Existence of divalent gold, Au(II). <i>Solid State Communications</i> , 1987 , 62, 525-529	1.6	33
287	The impact of molecular planarity on electronic devices in thienoisoindigo-based organic semiconductors. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 10455-10467	7.1	32
286	Organic Charge-transfer Salts and the Component Molecules in Organic Transistors. <i>Chemistry Letters</i> , 2011 , 40, 428-434	1.7	32
285	Charge injection from organic charge-transfer salts to organic semiconductors. <i>Journal of Materials Chemistry</i> , 2011 , 21, 18421		32
284	Organic conductors f rom fundamentals to nonlinear conductivity. <i>Annual Reports on the Progress of Chemistry Section C</i> , 2007 , 103, 134-172		32
284		3.5	32 32
	of Chemistry Section C, 2007, 103, 134-172 Nanoscale thin-film morphologies and field-effect transistor behavior of oligothiophene		
283	Of Chemistry Section C, 2007, 103, 134-172 Nanoscale thin-film morphologies and field-effect transistor behavior of oligothiophene derivatives. Organic Electronics, 2006, 7, 121-131		32
283	Organic Field-effect Transistor Based on Biphenyl Substituted TTF. Chemistry Letters, 2005, 34, 392-39 Stabilization of organic field-effect transistors by tert-butyl groups in dibenzotetrathiafulvalene	3 1.7	32
283 282 281	Nanoscale thin-film morphologies and field-effect transistor behavior of oligothiophene derivatives. <i>Organic Electronics</i> , 2006 , 7, 121-131 Organic Field-effect Transistor Based on Biphenyl Substituted TTF. <i>Chemistry Letters</i> , 2005 , 34, 392-39. Stabilization of organic field-effect transistors by tert-butyl groups in dibenzotetrathiafulvalene derivatives. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 14370-7 Temperature Dependence of the Reflectance Spectra of the Single Crystals of Bis(ethylenedithio)tetrathiafulvalenium Salts. £(BEDTITF)3(ReO4)2and £(BEDTITF)213. <i>Bulletin</i>	3 1.7	32 32 31
283 282 281 280	Nanoscale thin-film morphologies and field-effect transistor behavior of oligothiophene derivatives. <i>Organic Electronics</i> , 2006 , 7, 121-131 Organic Field-effect Transistor Based on Biphenyl Substituted TTF. <i>Chemistry Letters</i> , 2005 , 34, 392-39 Stabilization of organic field-effect transistors by tert-butyl groups in dibenzotetrathiafulvalene derivatives. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 14370-7 Temperature Dependence of the Reflectance Spectra of the Single Crystals of Bis(ethylenedithio)tetrathiafulvalenium Salts. £(BEDTITTF)3(ReO4)2and £(BEDTITTF)213. <i>Bulletin of the Chemical Society of Japan</i> , 1987 , 60, 4251-4257 Asymmetrical hole/electron transport in donorficceptor mixed-stack cocrystals. <i>Journal of</i>	3 1.7 3.6 5.1	32 32 31 31
283 282 281 280	Nanoscale thin-film morphologies and field-effect transistor behavior of oligothiophene derivatives. <i>Organic Electronics</i> , 2006 , 7, 121-131 Organic Field-effect Transistor Based on Biphenyl Substituted TTF. <i>Chemistry Letters</i> , 2005 , 34, 392-39 Stabilization of organic field-effect transistors by tert-butyl groups in dibenzotetrathiafulvalene derivatives. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 14370-7 Temperature Dependence of the Reflectance Spectra of the Single Crystals of Bis(ethylenedithio)tetrathiafulvalenium Salts. HBEDTIITF)3(ReO4)2and HBEDTIITF)2I3. <i>Bulletin of the Chemical Society of Japan</i> , 1987 , 60, 4251-4257 Asymmetrical hole/electron transport in donorBcceptor mixed-stack cocrystals. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 567-577	3 1.7 3.6 5.1 7.1	32 32 31 31

27	Requirements for Zero-Gap States in Organic Conductors. <i>Journal of the Physical Society of Japan</i> , 2010 , 79, 014703	1.5	29	
27	Organic Metals Based on a Selenium Analogue of Bis-Fused TTF. <i>Advanced Materials</i> , 1998 , 10, 588-590	24	29	
27	Dielectric Response and Electric-Field-Induced Metastable State in an Organic Conductor E(meso-DMBEDT-TTF)2PF6. <i>Journal of the Physical Society of Japan</i> , 2008 , 77, 073710	1.5	29	
27	Carrier Charge Polarity in Mixed-Stack Charge-Transfer Crystals Containing Dithienobenzodithiophene. ACS Applied Materials & amp; Interfaces, 2018, 10, 10262-10269	9.5	28	
27	Halogenated Bis(methylthio)tetrathiafulvalenes as a Unique Donor System. <i>Chemistry Letters</i> , 1997 , 26, 599-600	1.7	28	
27	New aspects of nonlinear conductivity in organic charge-transfer salts. <i>Journal of Materials Chemistry</i> , 2007 , 17, 4343		28	
26	Organic Superconductors Based on a New Electron Donor, Methylenedithio-diselenadithiafulvalene (MDT-ST). <i>Chemistry of Materials</i> , 2003 , 15, 1225-1227	9.6	28	
26	8 BAND STRUCTURE OF THE ORGANIC SUPERCONDUCTOR: (TMTSF)2X. <i>Chemistry Letters</i> , 1982 , 11, 1923	3-11. 9 26	28	
26	Self-contact thin-film organic transistors based on tetramethyltetrathiafulvalene. <i>Applied Physics Letters</i> , 2013 , 102, 063305	3.4	27	
26	6 Structural and Electrical Properties of (BEDT-TTF)3CuBr3. <i>Chemistry Letters</i> , 1987 , 16, 927-930	1.7	27	
26	Air-stable ambipolar organic transistors based on charge-transfer complexes containing dibenzopyrrolopyrrole. <i>RSC Advances</i> , 2016 , 6, 53345-53350	3.7	27	
26	Dihedral Angle Dependence of Transfer Integrals in Organic Semiconductors with Herringbone Structures. <i>Bulletin of the Chemical Society of Japan</i> , 2011 , 84, 1049-1056	5.1	26	
26	Voltage oscillation associated with nonlinear conductivity in the organic conductor (BEDT-TTF)2I3. <i>Journal of Applied Physics</i> , 2010 , 107, 103716	2.5	26	
26	Giant nonlinear conductivity and spontaneous current oscillation in an incommensurate organic superconductor. <i>Physical Review Letters</i> , 2008 , 100, 037001	7.4	26	
26	Electrical and Structural Properties of Etype BEDT-TTF Organic Conductors under Uniaxial Strain. Journal of the Physical Society of Japan, 2006, 75, 044716	1.5	26	
26	New Organic Superconductors with an Incommensurate Anion Lattice Consisting of Polyhalide Chains (MDT-TSF)Xy (MDT-TSF = Methylenedithiotetraselenafulvalene; X = Halogen; y = 1.27 1.29). Chemistry of Materials, 2003, 15, 3250-3255	9.6	26	
25	Incommensurate anion potential effect on the electronic states of the organic superconductor (MDT-TSF) (AuI2)0.436. <i>Physical Review B</i> , 2003 , 67,	3.3	26	
25	8 Crystal Structure and Physical Properties of (TTM-TTF)I2.47. <i>Bulletin of the Chemical Society of Japan</i> , 1986 , 59, 127-132	5.1	26	

257	3,6-Carbazole vs 2,7-carbazole: A comparative study of hole-transporting polymeric materials for inorganic-organic hybrid perovskite solar cells. <i>Beilstein Journal of Organic Chemistry</i> , 2016 , 12, 1401-9	2.5	26
256	Ambipolar organic transistors based on isoindigo derivatives. <i>Organic Electronics</i> , 2016 , 35, 95-100	3.5	26
255	Air-stable n-channel organic field-effect transistors based on a sulfur rich Eelectron acceptor. Journal of Materials Chemistry C, 2015 , 3, 3569-3573	7.1	25
254	Nanoparticles of organic conductors: synthesis and application as electrode material in organic field effect transistors. <i>New Journal of Chemistry</i> , 2011 , 35, 1315	3.6	25
253	Solution-processed carbon electrodes for organic field-effect transistors. <i>Applied Physics Letters</i> , 2008 , 93, 213303	3.4	25
252	Magnetoresistance effects evidencing the pi-d interaction in metallic organic conductors, (EDT-DSDTFVO)2*MX4 (M = Fe, Ga; X = Cl, Br). <i>Inorganic Chemistry</i> , 2006 , 45, 5712-4	5.1	25
251	Structural and physical properties of (BEDT-TTF) 3Li0.5 Hg (SCN)4 (H2O)2 and ♣(BEDT-TTF)2 CsHg (SCN)4. <i>Solid State Communications</i> , 1991 , 78, 49-54	1.6	25
250	Electronic Properties of Organic Conductors 2016 ,		25
249	Pressure-Induced Superconductivity in (MDT-TS)(AuI2)0.441 [MDT-TS = 5H-2-(1,3-diselenol-2-ylidene)-1,3,4,6-tetrathiapentalene]: A New Organic Superconductor Possessing an Incommensurate Anion Lattice. <i>Chemistry of Materials</i> , 2004 , 16, 5120-5123	9.6	24
248	Valence electronic structures of tetrakis(alkylthio)tetrathiafulvalenes. <i>Journal of the Chemical Society, Faraday Transactions 2</i> , 1986 , 82, 1067		24
247	A highly conducting organic metal derived from an organic-transistor material: benzothienobenzothiophene. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 17818-22	3.6	23
246	Effects of click postfunctionalization on thermal stability and field effect transistor performances of aromatic polyamines. <i>Polymer Chemistry</i> , 2012 , 3, 1427	4.9	23
245	N-Unsubstituted thienoisoindigos: preparation, molecular packing and ambipolar organic field-effect transistors. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 2509-2512	7.1	22
244	Principles that Govern Electronic Transport in Organic Conductors and Transistors. <i>Bulletin of the Chemical Society of Japan</i> , 2016 , 89, 973-986	5.1	22
243	Organic Metal with a High Oxidation State (+5/3), (TTMITP)(I3)5/3. Bulletin of the Chemical Society of Japan, 1997 , 70, 1809-1812	5.1	22
242	Novel Etype organic metal based on a bis-fused tetrathiafulvalene derivative. <i>Advanced Materials</i> , 1997 , 9, 714-716	24	22
241	Electronic structure of the organic conductors based on BMDT-TTF (BIS(methylenedithio)tetrathiafulvalene). <i>Solid State Communications</i> , 1985 , 55, 387-392	1.6	22
240	Giant phototransistor response in dithienyltetrathiafulvalene derivatives. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 2900	7.1	21

239	Nonlinear dynamics of conduction electrons in organic conductors. <i>Physical Review B</i> , 2009 , 79, 3.3	21
238	Three-Component Organic Conductors; (BEDT-TTF)2MM?(SCN)4. <i>Molecular Crystals and Liquid Crystals</i> , 1996 , 284, 15-26	21
237	Electrical properties and crystal structures of mercury(II) thiocyanate salts based upon BEDT-TTF with Li\(\mathbb{H}\), K\(\mathbb{H}\), NH4\(\mathbb{H}\), Rb\(\mathbb{H}\), and Cs\(\mathbb{H}\). Synthetic Metals, 1991 , 42, 2013-2018	21
236	Control of Electronic State by Dihedral Angle in Etype Bis(ethylenedithio)tetraselenafulvalene Salts. <i>Chemistry of Materials</i> , 2000 , 12, 2984-2987	20
235	Inversion of charge carrier polarity and boosting the mobility of organic semiconducting polymers based on benzobisthiadiazole derivatives by fluorination. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 3593 ⁷ 3 603	3 ²⁰
234	Low-Temperature Band Transport and Impact of Contact Resistance in Organic Field-Effect Transistors Based on Single-Crystal Films of Ph-BTBT-C10. <i>Physical Review Applied</i> , 2016 , 5,	19
233	Estimated Mobility of Ambipolar Organic Semiconductors, Indigo and Diketopyrrolopyrrole. Chemistry Letters, 2013 , 42, 68-70	19
232	Organic Field-Effect Transistors Based on Small-Molecule Organic Semiconductors Evaporated under Low Vacuum. <i>Applied Physics Express</i> , 2012 , 5, 061601	19
231	Structure and Physical Properties of (TMEO-TTP)2Au(CN)2. <i>Chemistry Letters</i> , 1993 , 22, 2085-2088 1.7	19
230	Structure and Conducting Properties of TMET-TTP Radical-Cation Salts. <i>Chemistry Letters</i> , 1993 , 22, 733-736	19
229	Charge Order Competition Leading to Nonlinearity in Organic Thyristor Family. <i>Journal of the Physical Society of Japan</i> , 2010 , 79, 044606	18
228	Thermoelectric Power of (BEDT-TTF)2MHg(SCN)4[M=K, Rb, and NH4]. <i>Journal of the Physical Society of Japan</i> , 1990 , 59, 2624-2626	18
227	Structural transitions from triangular to square molecular arrangements in the quasi-one-dimensional molecular conductors (DMEDO-TTF)2XF6 (X = P, As, and Sb). <i>Journal of the American Chemical Society</i> , 2012 , 134, 13330-40	17
226	Electronic structure of the quasi-one-dimensional organic conductors DCNQI (N,NMdicyanoquinonediimine)-Cu salts. <i>Physical Review B</i> , 1995 , 52, 7951-7959	17
225	Phase transition of tetrakis(octylthio)tetrathiafulvalene (TTC8IITF) and crystal structure analysis. <i>Journal of Materials Chemistry</i> , 1991 , 1, 37-41	17
224	Thermoelectric power of oriented thin-film organic conductors. <i>RSC Advances</i> , 2016 , 6, 41040-41044 3.7	17
223	All-organic self-contact transistors. <i>Applied Physics Letters</i> , 2014 , 105, 023301	16
222	Current-Density Dependence of the Charge-Ordering Gap in the Organic Salt E(BEDT-TTF)2CsM(SCN)4 (M=Zn, Co, and Co0.7Zn0.3). <i>Journal of the Physical Society of Japan</i> , 2009 1.5, 78, 024714	16

221	Synthesis and Electroconductive Properties of Radical Salts Derived from Tetrathiafulvalene Dimers. <i>Journal of Solid State Chemistry</i> , 2002 , 168, 597-607	3.3	16
220	2,5-Bis(1,3-dithiol-2-ylidene)-1,3,4,6-tetrathiapentalene (TTP) derivatives having four long alkylthio chains. <i>Tetrahedron</i> , 2002 , 58, 1119-1124	2.4	16
219	Novel One-Dimensional Organic Conductor Based on Selenium-Containing Bis-Fused Tetrathiafulvalene Derivative, (TSM-TTP)(I3)5/3. <i>Bulletin of the Chemical Society of Japan</i> , 1998 , 71, 1321	⁵ 1326	i 16
218	Structures and Electrical Properties of (EO-TTP)2AsF6. <i>Chemistry Letters</i> , 1999 , 28, 1249-1250	1.7	16
217	Organic Conductors Based on Multi-Sulfur EDonor And/Or EAcceptor Molecules-Bedt-Ttf, Bmdt-Ttf, Bpdt-Ttf, And m(dmit)2 <i>Molecular Crystals and Liquid Crystals</i> , 1985 , 125, 125-134		16
216	Giant nonlinear conduction from inhomogeneous charge order in rapidly cooled [BEDT-TTF)2RbZn(SCN)4. <i>Physical Review B</i> , 2009 , 79,	3.3	15
215	Organic Semiconductors and Conductors with tert-Butyl Substituents. <i>Crystals</i> , 2012 , 2, 1222-1238	2.3	15
214	Organic Field-Effect Transistors Based on Alkyl-Terminated Tetrathiapentalene (TTP) Derivatives. <i>Chemistry of Materials</i> , 2008 , 20, 5119-5121	9.6	15
213	Antiferromagnetic or canted antiferromagnetic orderings of Fe(III) d spins of FeX4- ions in BEDT-TTFVO(S).FeX4 (X = Cl, Br) [BEDT-TTFVO(S) = bis(ethylenedithio)tetrathiafulvalenoquinone(-thioquinone)-1,3-dithiolemethide]. <i>Inorganic</i>	5.1	15
212	Chemistry, 2007, 46, 3049-56 Superconductivity competing with the incommensurate antiferromagnetic insulating state in the organic conductor (MDT-TS)(AuI2)0.441. Physical Review B, 2005, 71,	3.3	15
211	Band Filling Control by Chemical Approach in Molecular Conductors, (TTM-TTP)Mx Cl4 [M, Ml Fe, Ga, Co, and Mn]. <i>Chemistry of Materials</i> , 2002 , 14, 458-462	9.6	15
210	Transport properties of organic metal containing magnetic ions (BEDT-TTF)2CsCo(SCN)4. <i>Physica C: Superconductivity and Its Applications</i> , 1996 , 264, 22-26	1.3	15
209	Ambipolar Transistor Properties of Charge-Transfer Complexes Containing Perylene and Dicyanoquinonediimines. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 12088-12095	3.8	14
208	Halogen Substitution Effects on the Molecular Packing and Thin Film Transistor Performances of Carbazoledioxazine Derivatives. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 26686-26694	3.8	14
207	Analysing organic transistors based on interface approximation. <i>AIP Advances</i> , 2014 , 4, 017126	1.5	14
206	Birhodanines and their sulfur analogues for air-stable n-channel organic transistors. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 9121-9127	7.1	14
205	Zero-Gap States of Organic Conductors in the Presence of Non-Stripe Charge Order. <i>Journal of the Physical Society of Japan</i> , 2013 , 82, 034712	1.5	14
204	Crystal structure and physical properties of (TTM-TTP)AuI2. <i>Journal of Materials Chemistry</i> , 1998 , 8, 285-	288	14

(2009-2004)

203	Tris-fused tetrathiafulvalenes (TTF): highly conducting single-component organics and metallic charge-transfer salt. <i>Synthetic Metals</i> , 2004 , 141, 307-313	3.6	14
202	Synchrotron-radiation photoemission study of in-situ synthesized DCNQI(N,N?-dicyanoquinonediimine)-Cu salts. <i>Solid State Communications</i> , 1995 , 93, 1-5	1.6	14
201	A Vinylog of Bis-Fused TTF: Novel Electron Framework for Metallic and Superconducting Organic Solids. <i>Molecular Crystals and Liquid Crystals</i> , 1996 , 284, 27-38		14
200	The Reflectance Spectra of (BEDT-TTF)5Hg3Br11and (BEDT-TTF)HgBr3. The Estimation of Effective On-Site Coulomb Interaction. <i>Bulletin of the Chemical Society of Japan</i> , 1990 , 63, 538-543	5.1	14
199	An organic superconductor, (BEDT-TTF)3Cl2(H2O)2, and some other BEDT-TTF conductors. <i>Synthetic Metals</i> , 1988 , 27, A451-A456	3.6	14
198	Coexistence of a magnetic order and metallic conduction in an organic system, (DMDCNQI)2Cu. <i>Synthetic Metals</i> , 1988 , 27, 237-242	3.6	14
197	Multicolor emission and thin film transistor properties of 1,8-diethynylcarbazole-based conjugated copolymers. <i>Polymer</i> , 2011 , 52, 5756-5763	3.9	13
196	Infrared and Raman studies of the phase transition in the organic conductor (TTM-TTP)I3. <i>Synthetic Metals</i> , 2005 , 150, 83-92	3.6	13
195	Current-induced metallic state in an organic (EDT-TSF)2GaCl4 conductor. <i>Journal of the American Chemical Society</i> , 2006 , 128, 9006-7	16.4	13
194	Syntheses and Properties of Oligothiophenes with Cyano and Hexyl Groups. <i>Chemistry Letters</i> , 2006 , 35, 280-281	1.7	13
193	Estimation of 🛘 -interactions in magnetic molecular conductors. <i>Polyhedron</i> , 2005 , 24, 2315-2320	2.7	13
192	Tetrathiapentalene Derivatives with Long Alkyl Chains. <i>Bulletin of the Chemical Society of Japan</i> , 2001 , 74, 59-65	5.1	13
191	Novel Oxygen-Containing Electron Donors for Organic Metals: 2-(1,3-Dithiol-2-ylidene)-5-(pyran-4-ylidene)- 1,3,4,6-tetrathiapentalenes. <i>Chemistry of Materials</i> , 1999 , 11, 2360-2368	9.6	13
190	Chemical and Physical Properties of Capped and Uncapped Alkylthio Substituted Tetrathiafulvalenes and Their Charge Transfer Complexes. <i>Israel Journal of Chemistry</i> , 1986 , 27, 319-325	₅ 3.4	13
189	Ambipolar transistor properties of 2,2?-binaphthosemiquinones. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 1588-1594	7.1	12
188	Energy-Level Engineering in Self-Contact Organic Transistors Prepared by Inkjet Printing. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 23139-23146	3.8	12
187	Trap density of states in n-channel organic transistors: variable temperature characteristics and band transport. <i>AIP Advances</i> , 2013 , 3, 102131	1.5	12
186	Giant nonlinear conductivity in an organic conductor with a sharp metal-insulator transition: [K BEDT-TTF)3(HSO4)2. <i>Physical Review B</i> , 2009 , 80,	3.3	12

185	Organic Field-effect Transistors Based on Solution-processible Dibenzotetrathiafulvalene Derivatives. <i>Chemistry Letters</i> , 2009 , 38, 200-201	1.7	12
184	Organic Transistors Based on Octamethylenetetrathiafulvalenes. <i>Chemistry Letters</i> , 2010 , 39, 538-540	1.7	12
183	Antiferromagnetic ordering of the incommensurate organic superconductor (MDT-TS)(AuI2)0.441 with a high spin-flop field. <i>Physical Review B</i> , 2008 , 77,	3.3	12
182	Many-body effect on the superconducting transition temperature in layered organic superconductors. <i>Physical Review B</i> , 2006 , 74,	3.3	12
181	Estimation of Magnetic Interactions in Mixed-Stack Molecular Ferrimagnets. <i>Journal of the Physical Society of Japan</i> , 2003 , 72, 149-154	1.5	12
180	Preparation, crystal structures and electrical properties of PF6 and AsF6 salts of a novel furopyrazine-extended donor (BDTFP) with a two-leg ladder type orbital overlapping mode. <i>Journal of Materials Chemistry</i> , 2001 , 11, 264-266		12
179	Crystal Structures and Molecular Packing of Tetrakis(alkylthio)tetrathiafulvalene (TTCnIITF); (Part II) (n= 7,9,11). <i>Bulletin of the Chemical Society of Japan</i> , 1992 , 65, 2086-2092	5.1	12
178	UV photoemission spectroscopy of poly(p-phenylene vinylene) (PPV). <i>Solid State Communications</i> , 1990 , 74, 677-680	1.6	12
177	1 : 2 charge-transfer complexes of perylene and coronene with perylene diimide, and the ambipolar transistors. <i>CrystEngComm</i> , 2019 , 21, 3218-3222	3.3	11
176	Non-stripe charge order in dimerized organic conductors. <i>Physical Review B</i> , 2016 , 93,	3.3	11
175	An Organic Metal Derived from a Selenium Analogue of Benzothienobenzothiophene. <i>European Journal of Inorganic Chemistry</i> , 2014 , 2014, 3895-3898	2.3	11
174	Inkjet Printing of Graphene Nanoribbons for Organic Field-Effect Transistors. <i>Applied Physics Express</i> , 2011 , 4, 115101	2.4	11
173	Cyclohexylenedithio Annelated Bis-Fused TTF Donors and Their Conducting Salts. <i>Chemistry Letters</i> , 1997 , 26, 649-650	1.7	11
172	Fermi surface of the organic superconductor (MDTBT)(I3)0.417 reconstructed by incommensurate potential. <i>Physical Review B</i> , 2006 , 73,	3.3	11
171	Nonlinear conductivity with an extremely small threshold electric field in the organic conductor (TSMITTP)(I3)5I. <i>Physical Review B</i> , 2007 , 75,	3.3	11
170	Metallization of (TTM-TTP)I3with a Highly One-Dimensional Half-Filled Band under Extremely High Pressure. <i>Journal of the Physical Society of Japan</i> , 2006 , 75, 053701	1.5	11
169	Enhancement of conductivity in poly (3-hexylthiophene) films prepared by spin-coating from blended solutions with small molecules. <i>Organic Electronics</i> , 2006 , 7, 440-444	3.5	11
168	Stereochemically ordered donor columns in an organic conductor, (Et2BEDT-TTP)2HgI3. Tetrahedron Letters, 2001 , 42, 5729-5732	2	11

(2020-2000)

167	A Novel Organic Conductor with Three-Dimensional Molecular Array: (TM-TPDS)2AsF6. <i>Chemistry Letters</i> , 2000 , 29, 1274-1275	1.7	11
166	Preparation, structures and physical properties of selenium analogues of DTEDT as promising donors for organic metals. <i>Journal of Materials Chemistry</i> , 2000 , 10, 1565-1572		11
165	Structure and Properties of an Organic Metal (BEDT-TTP)2I3. Chemistry Letters, 1995, 24, 549-550	1.7	11
164	Crystal Structure and Electrical Properties of an Organic Conductor E(BEDT-TTF)2AuBr2. <i>Chemistry Letters</i> , 1986 , 15, 1589-1592	1.7	11
163	Syntheses and Physical Properties of Tetrakis(methylthio)tetraselenafulvalene (TTC1-TSeF) and Tetrakis(methylseleno)tetraselenafulvalene (TSeC1-TSeF). <i>Chemistry Letters</i> , 1987 , 16, 2399-2402	1.7	11
162	Improved stability of organic field-effect transistor performance in oligothiophenes including Esomers. <i>Tetrahedron</i> , 2012 , 68, 2790-2798	2.4	10
161	Energy band structure and metal@rganic interactions in tetracyanoquinodimethane (TCNQ) and N,N?-dicyanoquinonediimine (DCNQI) materials. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 1781	7.1	10
160	Self Contact Organic Transistors. <i>Japanese Journal of Applied Physics</i> , 2010 , 49, 071605	1.4	10
159	High-resolution transparent carbon electrodes for organic field-effect transistors patterned by laser sintering. <i>Applied Physics Letters</i> , 2009 , 95, 253307	3.4	10
158	Thin-film phases of organic charge-transfer complexes formed by chemical vapor deposition. <i>Thin Solid Films</i> , 2009 , 518, 299-304	2.2	10
157	Non-thermal Evidence for Current-Induced Melting of Charge Order in E(BEDT-TTF)2CsZn(SCN)4. Journal of the Physical Society of Japan, 2008 , 77, 065004	1.5	10
156	(Tetrathiafulvalene)(tetracyanoquinodimethane) as a Contact Material for n-Channel and Ambipolar Organic Transistors. <i>Applied Physics Express</i> , 2008 , 1, 051801	2.4	10
155	Synthesis and Structures of Highly Conducting Charge-Transfer Salts of Selenium Containing TTM-TTP Derivatives. <i>Bulletin of the Chemical Society of Japan</i> , 2004 , 77, 1449-1458	5.1	10
154	1:1 Composition Organic Metal Including a Magnetic Counteranion, (TTMITTP)FeBr1.8Cl2.2. <i>Chemistry of Materials</i> , 2000 , 12, 3186-3191	9.6	10
153	Conducting charge-transfer and radical ion salts based on bitetrathiafulvalenes; an approach to organic metals using stoichiometry control. <i>Journal of Materials Chemistry</i> , 1999 , 9, 335-337		10
152	Crystal Structures and Electrical Conductivities of TXCn-TTF (X=Sulfur, Selenium, Tellurium;n=2,3) ITCNQ Charge-Transfer Complexes. <i>Bulletin of the Chemical Society of Japan</i> , 1991 , 64, 2159-2168	5.1	10
151	Crystal Structures and Molecular Packing of Tetrakis(alkylthio)tetrathiafulvalene (TTCnIITF); Part I (n= 3,4,6). <i>Bulletin of the Chemical Society of Japan</i> , 1992 , 65, 1878-1883	5.1	10
150	Diketopyrrolopyrrolethiophenethethoxythiophene based random copolymers for organic field effect transistor applications. <i>Organic Electronics</i> , 2020 , 87, 105986	3.5	10

149	Impact of bulky phenylalkyl substituents on the air-stable n-channel transistors of birhodanine analogues <i>RSC Advances</i> , 2018 , 8, 18400-18405	3.7	10
148	Perovskite solar cells based on hole-transporting conjugated polymers by direct arylation polycondensation. <i>MRS Communications</i> , 2018 , 8, 1244-1253	2.7	9
147	Highly-stable, green-solvent-processable organic thin-film transistors: angular- vs. linear-shaped carbazoledioxazine derivatives. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 5865-5876	7.1	9
146	Polymorphism in Hybrid OrganicIhorganic Bilayered Magnetic Conductors (BEDT-TTF)3(FeIIICl4)2, BEDT-TTF = bis(ethylenedithio)tetrathiafulvalene. <i>Crystal Growth and Design</i> , 2010 , 10, 782-789	3.5	9
145	Interlayer charge disproportionation in the layered organic superconductor [H)-(DMEDO-TSeF)2[Au(CN)4](THF) with polar dielectric insulating layers. <i>Physical Review Letters</i> , 2012 , 109, 147005	7.4	9
144	Charge transfer degree and superconductivity of the incommensurate organic superconductor (MDTIISF)(I3)0.422. <i>Physical Review B</i> , 2006 , 73,	3.3	9
143	Intramolecular relaxation observed in the surface of the quasi-one-dimensional organic conductor (BEDTITF)2PF6. <i>Physical Review B</i> , 2001 , 64,	3.3	9
142	2kFCDW Transition inE(BEDT-TTF)2PF6Family Salts. <i>Journal of the Physical Society of Japan</i> , 1998 , 67, 4193-4197	1.5	9
141	Molecular structure of a crystal phase coexisting with kappa -(BEDT-TTF)2Cu(NCS)2 studied by scanning tunneling microscopy. <i>Physical Review B</i> , 1994 , 50, 15427-15430	3.3	9
140	Structure and Physical Properties of (EP-TTP)2Au(CN)2. <i>Bulletin of the Chemical Society of Japan</i> , 1994 , 67, 3187-3190	5.1	9
139	The fermi surfaces in the Hype BEDT-TTF based organic superconductors. <i>Physica C: Superconductivity and Its Applications</i> , 1991 , 185-189, 2689-2690	1.3	9
138	Temperature dependence of the reflectance spectrum of bis-(ethylendithio)tetrathiafulvalenium perchlorate, (BEDT-TTF)3(ClO4)2. <i>Synthetic Metals</i> , 1988 , 25, 323-331	3.6	9
137	Electron Transport in Isodiketopyrrolopyrrole (isoDPP). Chemistry Letters, 2017, 46, 357-359	1.7	8
136	Ambipolar organic field-effect transistors based on N-Unsubstituted thienoisoindigo derivatives. <i>Dyes and Pigments</i> , 2020 , 180, 108418	4.6	8
135	Polarity Engineering of Benzobisthiadiazole-Based Polymer Thin Film Transistors by Variation of Electron Affinity of the Comonomers. <i>Bulletin of the Chemical Society of Japan</i> , 2017 , 90, 1041-1049	5.1	8
134	New Molecular Metals Based on a Tetrathiapentalene Donor with Peripheral Methoxy Groups. <i>Chemistry Letters</i> , 2011 , 40, 81-83	1.7	8
133	Tc of 11 K Identified for the Third Polymorph of the (BEDT-TTF)2Ag(CF3)4(TCE) Organic Superconductor. <i>Journal of the Physical Society of Japan</i> , 2012 , 81, 023705	1.5	8
132	Preparation, Structures, and Physical Properties of Tetrakis(alkylthio)tetraselenafulvalene (TTCn-TSeF,n= 1🛮 5). <i>Bulletin of the Chemical Society of Japan</i> , 2010 , 83, 335-344	5.1	8

131	Domain formation in the structural phase transition of the organic superconductor <code>II(DMEDOIISeF)2[Au(CN)4](THF)</code> . <i>Physical Review B</i> , 2007 , 76,	3.3	8
130	Structural and transport properties of the incommensurate organic superconductor (MDTBT)(I3)0.417. <i>Physical Review B</i> , 2005 , 71,	3.3	8
129	Dimerization Effect on the Physical Properties in New One-Dimensional Organic Conductors: (ChTM-TTP)2AuBr2, (ChTM-TTP)2GaCl4, and (ChTM-TTP)ReO4. <i>Bulletin of the Chemical Society of Japan</i> , 2002 , 75, 435-447	5.1	8
128	Transistor Characteristics of Charge-Transfer Complexes Observed across a Neutral-Ionic Transition. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 24174-24183	9.5	7
127	Linear-type carbazoledioxazine-based organic semiconductors: the effect of backbone planarity on the molecular orientation and charge transport properties <i>RSC Advances</i> , 2018 , 8, 9822-9832	3.7	7
126	Extracting parameters in ambipolar organic transistors based on dicyanomethylene terthiophene. <i>Applied Physics Express</i> , 2014 , 7, 121602	2.4	7
125	Collective response to alternating current in the organic conductor Hbis(ethylenedithio)tetrathiafulvalene)2I3. <i>Journal of Applied Physics</i> , 2013 , 113, 213702	2.5	7
124	Crystal Structure and Physical Properties of System E(BDH-TTP)2FeBr4. <i>Journal of the Physical Society of Japan</i> , 2013 , 82, 054706	1.5	7
123	Preparation, structures and physical properties of κ-type two-dimensional conductors based on unsymmetrical extended tetrathiafulvalene: 2-cyclopentanylidene-1,3-dithiolo[4,5-d]-4,5-ethylenedithiotetrathiafulvalene (CPDTET). <i>Journal of Materials Chemistry</i> , 1998 , 8, 1711-1717		7
122	Dual-function molecular crystal containing the magnetic chain anion. <i>Polyhedron</i> , 2007 , 26, 1800-1804	2.7	7
121	Synthesis and Structures of Neutral Crystals and Charge-Transfer Salts of Selenium Containing TMET-TTP Derivatives. <i>Bulletin of the Chemical Society of Japan</i> , 2003 , 76, 2091-2097	5.1	7
120	Magnetic Interactions in Insulating BEDT-TTF Salts. <i>Journal of Solid State Chemistry</i> , 2002 , 168, 433-437	3.3	7
119	Anisotropic Three-dimensional Superconductivity of the Incommensurate Organic Superconductor (MDT-ST)(I3)0.417. <i>Journal of the Physical Society of Japan</i> , 2005 , 74, 1529-1533	1.5	7
118	Selenium Analogs of Tetrathiapentalene Derivatives with Long Alkyl Chains. <i>Bulletin of the Chemical Society of Japan</i> , 2001 , 74, 833-838	5.1	7
117	Anion Ordering and Optical Properties of the Quasi-One-Dimensional Organic Conductor (ChTM-TTP)2GaCl4. <i>Journal of the Physical Society of Japan</i> , 2002 , 71, 3059-3064	1.5	7
116	Tetrathiapentalene-based organic conductors with 1:1 composition. <i>Journal of Materials Chemistry</i> , 2001 , 11, 2125-2130		7
115	Conducting Salts Composed of Selenium Analogues of TMET-TTP. <i>Chemistry Letters</i> , 1998 , 27, 253-254	1.7	7
114	Synthesis and properties of the selenium analogue of DTEDT. <i>Chemical Communications</i> , 1996 , 363	5.8	7

113	Synthesis of BEDT-BDTBS and Crystal Structures of Its Conducting Cation Radical Salts. <i>Chemistry Letters</i> , 1996 , 25, 1001-1002	1.7	7
112	(DTEDT)[Au(CN)2]0.4: ein organischer Supraleiter mit neuartigem ÆlektronengerEt ßinyloges, anelliertes Tetrathiafulvalen. <i>Angewandte Chemie</i> , 1995 , 107, 1340-1343	3.6	7
111	Crystal and Electronic Structures of (BEDT-TTF)AuCl2AuCl4. <i>Chemistry Letters</i> , 1986 , 15, 2069-2072	1.7	7
110	Magnetic Properties of Coexistent System of Itinerant and Localized Electrons, (BEDT-TTF) $\mbox{$mathsf$_2}\$ (M = K, Rb, Cs). Journal De Physique, I, 1996 , 6, 1987-19	96	7
109	Low-temperature properties of thermoelectric generators using molecular conductors. <i>Synthetic Metals</i> , 2020 , 259, 116217	3.6	7
108	The thermoelectric power of band-filling controlled organic conductors, ☑ (BEDT-TTF)3(CoCl4)2☑(GaCl4)x. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 2004-2010	13	7
107	A New Dimer Mott Insulator: E(BEDT-TTF)2TaF6. Journal of the Physical Society of Japan, 2018, 87, 08370	03 .5	7
106	n-Type Organic Field-Effect Transistors Based on Bisthienoisatin Derivatives. <i>ACS Applied Electronic Materials</i> , 2019 , 1, 764-771	4	6
105	Tuning Backbone Planarity in Thiadiazolobenzotriazole B is(thienothiophenyl)ethylene Copolymers for Organic Field-Effect Transistors. <i>ACS Applied Polymer Materials</i> , 2019 , 1, 2302-2312	4.3	6
104	Charge Ordering Transitions of the New Organic Conductors fin- and fi-(BEDT-TTF)2TaF6. <i>Magnetochemistry</i> , 2017 , 3, 14	3.1	6
103	A Mechanism of DC-AC Conversion in the Organic Thyristor. <i>Materials</i> , 2010 , 3, 2027-2036	3.5	6
102	Fermi surface and in-plane anisotropy of the layered organic superconductor []-(DMEDO-TSeF)2[Au(CN)4](THF) with domain structures. <i>Physical Review B</i> , 2011 , 83,	3.3	6
101	Enhanced performance of bottom-contact organic field-effect transistors with M(DMDCNQI)2 buffer layers. <i>Physica B: Condensed Matter</i> , 2010 , 405, S378-S380	2.8	6
100	Structures and properties of MeDTDM salts. <i>Advanced Materials</i> , 1997 , 9, 633-635	24	6
99	Crystal Structures and Electrical Properties of TSeCn-TTF (n=2 and 4). <i>Bulletin of the Chemical Society of Japan</i> , 1988 , 61, 3455-3459	5.1	6
98	Marginal Paramagnetic State of a One-Dimensional Half-Filled Alternating Chain in (TTM-TTP)AuI2. Journal of the Physical Society of Japan, 2000 , 69, 4066-4070	1.5	6
97	Improving the air-stability of n-type organic thin-film transistors by polyacrylonitrile additive. <i>Japanese Journal of Applied Physics</i> , 2020 , 59, SDDC05	1.4	6
96	Electronic engineering of a tetrathiafulvalene charge-transfer salt via reduced symmetry induced by combined substituents. <i>Physical Chemistry Chemical Physics</i> , 2019 , 21, 22639-22646	3.6	6

95	Ambipolar Transistor Properties of Metal Complexes Derived from 1,2-Phenylenediamines. <i>ACS Applied Electronic Materials</i> , 2019 , 1, 1633-1640	4	5	
94	Temperature-dependent characteristics of n-channel transistors based on 5,5?-bithiazolidinylidene-2,4,2?,4?-tetrathiones. <i>New Journal of Chemistry</i> , 2019 , 43, 11865-11870	3.6	5	
93	Current orientation and contact distance dependence of rapid voltage oscillations in the organic conductor & [bis(ethylenedithio)tetrathiafulvalene]3(HSO4)2. <i>Journal of Applied Physics</i> , 2010 , 108, 123709	2.5	5	
92	Novel Bis-fused Electron Donor Composed of Tetrathiafulvalene and Tetraselenafulvalene. <i>Chemistry Letters</i> , 2010 , 39, 1093-1095	1.7	5	
91	Metalsemiconductor structural phase transitions and antiferromagnetic orderings in (Benzo-TTFVO)2IMX4 (M = Fe, Ga; X = Cl, Br) salts. <i>Journal of Materials Chemistry</i> , 2007 , 17, 1664-1673		5	
90	Ethylenedioxy-Containing Tetrathiapentalene Derivative with Ethylthio Chains, C2TEO-TTP. <i>Bulletin of the Chemical Society of Japan</i> , 2003 , 76, 89-96	5.1	5	
89	Magnetic Investigation of Possible Quasi-One-Dimensional Two-Leg Ladder Systems, (BDTFP)2X(PhCl)0.5 (X = PF6, AsF6). <i>Journal of the Physical Society of Japan</i> , 2002 , 71, 2022-2030	1.5	5	
88	Modulation of E(BEDT-TTF)2PF6 crystal surface structure induced by charge redistribution in surface layers. <i>Surface Science</i> , 1999 , 433-435, 147-151	1.8	5	
87	Band structure and physical properties of an organic conductor (BEDT-TTF)4Cu(C2O4)2. <i>Synthetic Metals</i> , 1992 , 49, 253-260	3.6	5	
86	Transport Properties of Molecular Conductors (BSBS)2XF6 (X = As, Sb, and Ta): Investigation of Intermolecular Transfer Integrals in the Radical-Cationic State of Benzothienobenzothiophene-Type Semiconductors. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 5216-52	3.8 221	4	
85	Organic Transistors: D-A1-D-A2 Backbone Strategy for Benzobisthiadiazole Based n-Channel Organic Transistors: Clarifying the Selenium-Substitution Effect on the Molecular Packing and Charge Transport Properties in Electron-Deficient Polymers (Adv. Funct. Mater. 33/2017). Advanced	15.6	4	
84	Two-Dimensional Superconducting Properties of the Organic Superconductor [I-(DMEDO-TSeF)2[Au(CN)4](THF) with Domain Structures. <i>Journal of the Physical Society of Japan</i> , 2011 , 80, 054706	1.5	4	
83	Rapid voltage oscillations and ac-dc interference phenomena in the two-dimensional charge-ordered organic conductor & (bis(ethylenedithio)tetrathiafulvalene)3(ClO4)2. <i>Journal of Applied Physics</i> , 2012 , 112, 033714	2.5	4	
82	Nonlinear Conductivity in Dicyanoquinonediimine Complexes. <i>Journal of the Physical Society of Japan</i> , 2010 , 79, 094703	1.5	4	
81	Surface Superstructures Fluctuating in the Quasi-One-Dimensional Organic Conductor E(BEDT-TTF)2PF6Observed by Scanning Tunneling Microscopy. <i>Japanese Journal of Applied Physics</i> , 1997 , 36, 3894-3897	1.4	4	
80	Structural and magnetic properties of (C2TEO-TTP)[Cr(isoq)2(NCS)4]ICH2Cl2. <i>CrystEngComm</i> , 2003 , 5, 300-302	3.3	4	
79	A New Type of Uniformly Stacked Phase in Tetrathiapentalene-Based Organic Metals. <i>Bulletin of the Chemical Society of Japan</i> , 2005 , 78, 1442-1449	5.1	4	
78	Structures and Properties of a New Type Organic Metal: (CPEO-TTP)(SbF6)0.4. <i>Advanced Materials</i> , 1999 , 11, 25-27	24	4	

77	A new mechanism of the structural phase transition accompanied by the change of the electronic structure of E(BPDT-TTF)[Ni(dmit)2]2. <i>Physica B: Physics of Condensed Matter & C: Atomic, Molecular and Plasma Physics, Optics,</i> 1986 , 143, 562-564		4
76	Raman Spectra of the Organic Conductor, (TTMITTF)12.47. <i>Bulletin of the Chemical Society of Japan</i> , 1987 , 60, 2680-2682	5.1	4
75	Ambipolar Organic Field-Effect Transistors Based on Indigo Derivatives. <i>Engineering Journal</i> , 2015 , 19, 61-74	1.8	4
74	n-Channel Transistor of 1,5-Dibromo-2,6-naphthoquinhydrone. <i>Chemistry Letters</i> , 2019 , 48, 264-266	1.7	3
73	Metallhsulator Transition of the New One-Dimensional Organic Conductors with Complete Uniform Stacks: (DMEDO-TTF)2X(X= ClO4and BF4). <i>Journal of the Physical Society of Japan</i> , 2016 , 85, 094701	1.5	3
72	Charge-transfer complexes of sulfur-rich acceptors derived from birhodanines. <i>CrystEngComm</i> , 2019 , 21, 5227-5234	3.3	3
71	Organic Superconductivity Enhanced by Asymmetric-Anion Random Potential in (MDT-TS)10.85Br0.41 [MDT-TS = 5H-2-(1,3-diselenole-2-ylidene)-1,3,4,6-tetrathiapentalene]. <i>Chemistry of Materials</i> , 2009 , 21, 3521-3525	9.6	3
7º	Flat Resistivity in Phase Charge-Transfer Salts of Selenium-Containing TMET-TTP Derivatives. <i>Bulletin of the Chemical Society of Japan</i> , 2008 , 81, 947-955	5.1	3
69	Nano-Size Charge Inhomogeneity in Organic Metals 2006 , 224-261		3
68	Tetrathiapentalene type donors as promising Electron frameworks for organic metals stable down to low temperatures. <i>Molecular Crystals and Liquid Crystals</i> , 2002 , 380, 69-76	0.5	3
67	Low-Temperature Magnetoresistance Anisotropy in (BDT-TTP)2SbF6and (BDT-TTP)2AsF6. <i>Journal of the Physical Society of Japan</i> , 1998 , 67, 355-356	1.5	3
66	Electrical conductivity of perchlorate doped polyacetylene. Synthetic Metals, 1995, 69, 59-60	3.6	3
65	Electrical Properties of DT-TTF Salts. <i>Molecular Crystals and Liquid Crystals</i> , 1996 , 284, 329-336		3
64	Electronic Structure of the Organic Superconductor E(BEDT-TTF)2Cu(NCS)2Studied by Angle-Resolved Photoemission Spectroscopy. <i>Japanese Journal of Applied Physics</i> , 1992 , 31, 1341-1342	1.4	3
63	Metallic Transport and Ferrimagnetic Interaction Achieved by Band Filling Control in Organic Conductors; NET3(MCl42-)2-x(MMl41-)x [M = Co, Zn, MM+ Ga, Fe]. <i>Journal of the Physical Society of Japan</i> , 2005 , 74, 2061-2068	1.5	3
62	Temperature Dependence of Field-Effect Thermoelectric Power in Rubrene Crystals. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 22399-22405	3.8	3
61	Transistor properties of salen-type metal complexes RSC Advances, 2020, 10, 29603-29609	3.7	3
60	Organic Metals Based on a Selenium Analogue of Bis-Fused TTF 1998 , 10, 588		3

(2021-2015)

59	Suppression of access resistance using carbon electrodes in organic transistors based on alkyl-substituted thienoacene. <i>Organic Electronics</i> , 2015 , 21, 106-110	3.5	2	
58	A cyano-rich small molecule dopant for organic thermoelectrics. <i>Organic Electronics</i> , 2020 , 87, 105978	3.5	2	
57	Dynamics of Charge Ordering in the Nonlinear Regime of E(BEDT-TTF)2CsZn(SCN)4. <i>Journal of the Physical Society of Japan</i> , 2015 , 84, 033707	1.5	2	
56	Molecular Conductors. European Journal of Inorganic Chemistry, 2014 , 2014, 3783-3784	2.3	2	
55	Fermi Surface of the Dual-Layered Organic Superconductor 2 2-(BEDT-TTF)2Ag(CF3)4(TCE) with Acentric Charge-Ordered Layers. <i>Journal of the Physical Society of Japan</i> , 2013 , 82, 024704	1.5	2	
54	Organic Field-Effect Transistor Materials Based on Cycloalkane-Capped Tetrathiapentalene Derivatives. <i>Japanese Journal of Applied Physics</i> , 2010 , 49, 01AB10	1.4	2	
53	Two-dimensional superconductivity in the layered organic superconductor H-(DMEDO-TSeF)2[Au(CN)4](THF) with thick dielectric insulating layers. <i>Physical Review B</i> , 2012 , 85,	3.3	2	
52	High Carrier Mobility in Mesophase of a Dithienothiophene Derivative. <i>Applied Physics Express</i> , 2009 , 2, 041502	2.4	2	
51	Nonequilibrium charge ordering in E(BEDT-TTF)2MM?(SCN)4(M=Rb, Cs; M?=Co, Zn). <i>Physica B: Condensed Matter</i> , 2010 , 405, S217-S220	2.8	2	
50	Crystal Structure and Electrical Conducting Properties of [BEDT-BDTBT]3[ReO4]2, an Organic Conductor Based on a Novel Benzo[c]thiophene-Extended Donor. <i>Chemistry Letters</i> , 1997 , 26, 1013-10	14 ^{.7}	2	
49	Doping Effect on Surface Roughness of Organic Semiconductor Thin Films. <i>Japanese Journal of Applied Physics</i> , 2006 , 45, 526-529	1.4	2	
48	An organic spin-ladder system, (BEDT-TTF)[Co(mnt)2]. Synthetic Metals, 2004, 145, 95-101	3.6	2	
47	Structures and properties of ethylenedioxy substituted CH-TTP. <i>Molecular Crystals and Liquid Crystals</i> , 2002 , 380, 169-174	0.5	2	
46	ESR Investigation of Organic Conductors (DTM-TTP)(TCNQ)(TCE) and (TMET-TTP)2(TCNQ). <i>Journal of the Physical Society of Japan</i> , 2000 , 69, 1845-1849	1.5	2	
45	Transport properties of Phase organic conductors, (BEDT-TTF)2CsHg(SCN)4 and (BEDT-TTF)2K1.4Co(SCN)4. <i>Physica C: Superconductivity and Its Applications</i> , 1999 , 316, 243-250	1.3	2	
44	Raman Investigation of the One-Dimensional Organic Conductor with a Half-Filled Band, (TTM-TTP)13. <i>Journal of the Physical Society of Japan</i> , 1999 , 68, 3748-3749	1.5	2	
43	Bulky Phenylalkyl Substitutions to Bisthienoisatins and Thienoisoindigos. <i>Crystal Growth and Design</i> , 2020 , 20, 3293-3303	3.5	2	
42	Absence of HOMO/LUMO Transition in Charge-Transfer Complexes of Thienoacenes. <i>Journal of Physical Chemistry A</i> , 2021 , 125, 146-153	2.8	2	

41	Conductivity Modifications of Graphene by Electron Donative Organic Molecules. <i>Journal of Electronic Materials</i> , 2017 , 46, 4463-4467	1.9	1
40	Thermoelectric Power of the Multi-Orbital Dimer Mott System, E(CH3)4N[Pd(dmit)2]2. <i>Journal of the Physical Society of Japan</i> , 2020 , 89, 034701	1.5	1
39	Ambipolar Transistor Properties of N2S2-Type Metal Complexes. <i>Chemistry Letters</i> , 2020 , 49, 870-874	1.7	1
38	Charge-Transfer Complexes 2016 , 253-310		1
37	Dielectric Response of Multiorbital Molecular Compounds (TTM-TTP)X (X = AuI2 and I3). <i>Journal of the Physical Society of Japan</i> , 2014 , 83, 094709	1.5	1
36	Effective Synthesis and Crystal Structure of a 24-Membered Cyclic Decanedisulfide Dimer. <i>Chemistry Letters</i> , 2012 , 41, 1678-1680	1.7	1
35	New Strongly Correlated One-Dimensional Organic Semiconductor (ChTM-TTP)2Ag(CN)2. <i>Bulletin of the Chemical Society of Japan</i> , 2013 , 86, 526-528	5.1	1
34	Disordered polyhalide anion effect on the Fermi surface of the incommensurate organic superconductor (MDT-TSF)I0.77Br0.52. <i>Physical Review B</i> , 2011 , 84,	3.3	1
33	Development of Elinked quaterthiophene and tetrathiafulvalene dimers as new organic semiconductors. <i>Physica B: Condensed Matter</i> , 2010 , 405, S373-S377	2.8	1
32	Estimation of Magnetic Interactions and Magnetic Structures in Charge-transfer Salts Based on [Cr(isoq)2(NCS)4]-(isoq = Isoquinoline). <i>Journal of the Physical Society of Japan</i> , 2004 , 73, 3335-3340	1.5	1
31	Universal Phase Diagram of EType TMET-TTP Salts. <i>Journal of the Physical Society of Japan</i> , 2001 , 70, 1642-1646	1.5	1
30	MetalBemiconductor Transition of the New Organic Conductor (DTEDT)3Ag(CN)2. <i>Journal of the Physical Society of Japan</i> , 2002 , 71, 2975-2979	1.5	1
29	Tetrathiapentalene-based organic conductors with magnetic counter anions. <i>Molecular Crystals and Liquid Crystals</i> , 2002 , 380, 157-161	0.5	1
28	Molecular and electronic properties of E(BEDT-TTF)2PF6 studied by scanning tunneling microscopy. <i>Synthetic Metals</i> , 1995 , 70, 935-936	3.6	1
27	Structural Study of the Two Phases of Tetrakis(methylseleno)tetrathiafulvalene (TSeC1IITF). Bulletin of the Chemical Society of Japan, 1991 , 64, 3690-3693	5.1	1
26	Band structure and fermi surface of organic conductors. <i>Synthetic Metals</i> , 1991 , 42, 2447-2452	3.6	1
25	Uniaxial Strain Effect on the Phase Organic Conductor with a Large Dihedral Angle, E(TMET-TTP)4PF6. <i>Journal of the Physical Society of Japan</i> , 2003 , 72, 1152-1154	1.5	1
24	Isotropic Uniaxial Strain Effect on the Incommensurate Organic Superconductor: (MDT-TS)(AuI2)0.441. <i>Journal of the Physical Society of Japan</i> , 2008 , 77, 014706	1.5	1

23	Metallization of the Organic Conductor (TTM-TTP)I3with a Highly One-Dimensional Half-Filled Band under Pressure beyond 7 GPa. <i>Journal of the Physical Society of Japan</i> , 2007 , 76, 178-181	1.5	1
22	A New Organic Superconductor: (DTEDT)[Au(CN)2]0.4 1996 , 437-440		1
21	Structures and transistor properties of extended and unsymmetrical birhodanines. <i>CrystEngComm</i> , 2020 , 22, 6920-6926	3.3	1
20	A Large Variety of Crystal Structures and Conducting Properties in Dimethylbenzoimidazolium Salts of Tetracyanoquinodimethanes. <i>Crystal Growth and Design</i> , 2020 , 20, 5940-5946	3.5	1
19	Cross-Linking of Poly(arylenebutadiynylene)s and Its Effect on Charge Carrier Mobilities in Thin-Film Transistors. <i>Macromolecules</i> , 2021 , 54, 4351-4362	5.5	1
18	Ambipolar transistors based on chloro-substituted tetraphenylpentacene. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 3294-3299	7.1	1
17	Superconducting super-organized nanoparticles of the superconductor (BEDT-TTF)2Cu(NCS)2. <i>Synthetic Metals</i> , 2021 , 278, 116844	3.6	1
16	Diselenolene proligands: reactivity and comparison with their dithiolene congeners. <i>New Journal of Chemistry</i> , 2021 , 45, 8971-8977	3.6	1
15	Low-Symmetry Gap Functions of Organic Superconductors. <i>Journal of the Physical Society of Japan</i> , 2018 , 87, 044705	1.5	О
14	N-Type Charge Carrier Transport Properties of BDOPV-Benzothiadiazole-Based Semiconducting Polymers. <i>Electronics (Switzerland)</i> , 2020 , 9, 1604	2.6	O
13	Charge injected proton transfer in indigo derivatives. <i>Physical Chemistry Chemical Physics</i> , 2021 , 23, 21	973 <u>6</u> 21	980
12	Marginal Coherent Interlayer Electron Motion in the Layered Organic Superconductor with Domain Walls, I-(DMEDO-TSeF)2[Au(CN)4](THF). <i>Journal of the Physical Society of Japan</i> , 2014 , 83, 015002	1.5	
11	Characteristics and fabrication of vertical type organic light emitting transistor using dimethyldicyanoquinonediimine (DMDCNQI) as a n-type active layer and light emitting polymer. <i>Journal of Nanoscience and Nanotechnology</i> , 2011 , 11, 1779-82	1.3	
10	Theoretical Approach for the Development of Organic Semiconductors on the Basis of the MO Symmetry: Thienoacene as an Example. <i>Materials Research Society Symposia Proceedings</i> , 2012 , 1436, 23		
9	Electric Conduction in Molecular Materials. <i>Molecular Science</i> , 2008 , 2, A0024	О	
8	Synthesis of a new donor, BEDT-HBDST and crystal structures, electrical and magnetic properties of (BEDT-HBDST)2MX4 (M=Fe, Ga, X=Cl, Br), where BEDT-HBDST=2,5-bis(4,5-ethylenedithio-1,3-diselenol-2-ylidene)-2,3,4,5-tetrahydrothiophene.	3.3	
7	Electronic state of E(BMDT-TTF)2Au(CN)2 studied by NMR and thermoelectric measurements. <i>Synthetic Metals</i> , 1995 , 70, 879-880	3.6	
6	A New Ambient-Pressure Organic Superconductor, ?-(BEDT-TTF)2Ag(CN)2H2O 1991 , 323-326		

- 5 Transport Properties **2016**, 109-151
- 4 Quantum Chemistry of Solids **2016**, 61-108
- 3 Electron Correlation **2016**, 183-225
- Organic Semiconductors **2016**, 311-352
- A New Genuine Mott Insulator: E(BEDT-TTF)TaF6. Journal of the Physical Society of Japan, 2021, 90, 1037035