Dan Cui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2671667/publications.pdf Version: 2024-02-01

		331670	642732
23	1,185	21	23
papers	citations	h-index	g-index
23	23	23	1066
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Resourceful treatment of harsh high-nitrogen rare earth element tailings (REEs) wastewater by carbonate activated Chlorococcum sp. microalgae. Journal of Hazardous Materials, 2022, 423, 127000.	12.4	28
2	Recent advancements in azo dye decolorization in bio-electrochemical systems (BESs): Insights into decolorization mechanism and practical application. Water Research, 2021, 203, 117512.	11.3	51
3	Mutual effect between electrochemically active bacteria (EAB) and azo dye in bio-electrochemical system (BES). Chemosphere, 2020, 239, 124787.	8.2	29
4	Bacteria-affinity aminated carbon nanotubes bridging reduced graphene oxide for highly efficient microbial electrocatalysis. Environmental Research, 2020, 191, 110212.	7.5	7
5	Ultrafine palladium nanoparticles supported on 3D self-supported Ni foam for cathodic dechlorination of florfenicol. Chemical Engineering Journal, 2019, 359, 894-901.	12.7	136
6	Facile fabrication of carbon brush with reduced graphene oxide (rGO) for decreasing resistance and accelerating pollutants removal in bio-electrochemical systems. Journal of Hazardous Materials, 2018, 354, 244-249.	12.4	21
7	Response of antimicrobial nitrofurazone-degrading biocathode communities to different cathode potentials. Bioresource Technology, 2017, 241, 951-958.	9.6	46
8	Corrugated stainless-steel mesh as a simple engineerable electrode module in bio-electrochemical system: Hydrodynamics and the effects on decolorization performance. Journal of Hazardous Materials, 2017, 338, 287-295.	12.4	28
9	Increasing the bio-electrochemical system performance in azo dye wastewater treatment: Reduced electrode spacing for improved hydrodynamics. Bioresource Technology, 2017, 245, 962-969.	9.6	37
10	Comprehensive study on hybrid anaerobic reactor built-in with sleeve type bioelectrocatalyzed modules. Chemical Engineering Journal, 2017, 330, 1306-1315.	12.7	24
11	Evaluation of anaerobic sludge volume for improving azo dye decolorization in a hybrid anaerobic reactor with built-in bioelectrochemical system. Chemosphere, 2017, 169, 18-22.	8.2	24
12	Effect of electrode position on azo dye removal in an up-flow hybrid anaerobic digestion reactor with built-in bioelectrochemical system. Scientific Reports, 2016, 6, 25223.	3.3	32
13	Azo dye decolorization in an up-flow bioelectrochemical reactor with domestic wastewater as a cost-effective yet highly efficient electron donor source. Water Research, 2016, 105, 520-526.	11.3	82
14	Efficient azo dye decolorization in a continuous stirred tank reactor (CSTR) with built-in bioelectrochemical system. Bioresource Technology, 2016, 218, 1307-1311.	9.6	22
15	Analysis of electrode microbial communities in an up-flow bioelectrochemical system treating azo dye wastewater. Electrochimica Acta, 2016, 220, 252-257.	5.2	38
16	Decolorization enhancement by optimizing azo dye loading rate in an anaerobic reactor. RSC Advances, 2016, 6, 49995-50001.	3.6	22
17	Efficient treatment of azo dye containing wastewater in a hybrid acidogenic bioreactor stimulated by biocatalyzed electrolysis. Journal of Environmental Sciences, 2016, 39, 198-207.	6.1	25
18	A horizontal plug-flow baffled bioelectrocatalyzed reactor for the reductive decolorization of Alizarin Yellow R. Bioresource Technology, 2015, 195, 73-77.	9.6	16

Dan Cui

#	Article	IF	CITATIONS
19	Efficient azo dye removal in bioelectrochemical system and post-aerobic bioreactor: Optimization and characterization. Chemical Engineering Journal, 2014, 243, 355-363.	12.7	55
20	Enhanced decolorization of azo dye in a small pilot-scale anaerobic baffled reactor coupled with biocatalyzed electrolysis system (ABR–BES): A design suitable for scaling-up. Bioresource Technology, 2014, 163, 254-261.	9.6	81
21	Azo dye removal in a membrane-free up-flow biocatalyzed electrolysis reactor coupled with an aerobic bio-contact oxidation reactor. Journal of Hazardous Materials, 2012, 239-240, 257-264.	12.4	75
22	A membrane-free, continuously feeding, single chamber up-flow biocatalyzed electrolysis reactor for nitrobenzene reduction. Journal of Hazardous Materials, 2012, 199-200, 401-409.	12.4	52
23	Efficient Reduction of Nitrobenzene to Aniline with a Biocatalyzed Cathode. Environmental Science & Technology, 2011, 45, 10186-10193.	10.0	254