
## Lianzhou Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2671661/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Effects of ultrasound on the structure and physical properties of black bean protein isolates. Food<br>Research International, 2014, 62, 595-601.                                                                                                                         | 6.2  | 460       |
| 2  | Functional and conformational changes to soy proteins accompanying anthocyanins: Focus on covalent and non-covalent interactions. Food Chemistry, 2018, 245, 871-878.                                                                                                     | 8.2  | 269       |
| 3  | Impact of ultrasonic treatment on an emulsion system stabilized with soybean protein isolate and lecithin: Its emulsifying property and emulsion stability. Food Hydrocolloids, 2017, 63, 727-734.                                                                        | 10.7 | 212       |
| 4  | Identification of a novel ACE-inhibitory peptide from casein and evaluation of the inhibitory mechanisms. Food Chemistry, 2018, 256, 98-104.                                                                                                                              | 8.2  | 153       |
| 5  | Dietary protein-phenolic interactions: characterization, biochemical-physiological consequences, and potential food applications. Critical Reviews in Food Science and Nutrition, 2021, 61, 3589-3615.                                                                    | 10.3 | 140       |
| 6  | Relationship between Secondary Structure and Surface Hydrophobicity of Soybean Protein Isolate<br>Subjected to Heat Treatment. Journal of Chemistry, 2014, 2014, 1-10.                                                                                                    | 1.9  | 132       |
| 7  | Relationship Between Surface Hydrophobicity and Structure of Soy Protein Isolate Subjected to<br>Different Ionic Strength. International Journal of Food Properties, 2015, 18, 1059-1074.                                                                                 | 3.0  | 122       |
| 8  | Ultrasound driven conformational and physicochemical changes of soy protein hydrolysates.<br>Ultrasonics Sonochemistry, 2020, 68, 105202.                                                                                                                                 | 8.2  | 117       |
| 9  | Soy Protein: Molecular Structure Revisited and Recent Advances in Processing Technologies. Annual Review of Food Science and Technology, 2021, 12, 119-147.                                                                                                               | 9.9  | 107       |
| 10 | Dietary advanced glycation endâ€products: Perspectives linking food processing with health<br>implications. Comprehensive Reviews in Food Science and Food Safety, 2020, 19, 2559-2587.                                                                                   | 11.7 | 103       |
| 11 | Covalent conjugates of anthocyanins to soy protein: Unravelling their structure features and in vitro gastrointestinal digestion fate. Food Research International, 2019, 120, 603-609.                                                                                   | 6.2  | 101       |
| 12 | Non-covalent interaction of soy protein isolate and catechin: Mechanism and effects on protein conformation. Food Chemistry, 2022, 384, 132507.                                                                                                                           | 8.2  | 101       |
| 13 | Complexation of thermally-denatured soybean protein isolate with anthocyanins and its effect on the protein structure and in vitro digestibility. Food Research International, 2018, 106, 619-625.                                                                        | 6.2  | 99        |
| 14 | Relationship between Molecular Flexibility and Emulsifying Properties of Soy Protein Isolate-Glucose<br>Conjugates. Journal of Agricultural and Food Chemistry, 2019, 67, 4089-4097.                                                                                      | 5.2  | 99        |
| 15 | Purification and Characterization of Antioxidant Peptides from Alcalase-Hydrolyzed Soybean<br>( <i>Glycine max</i> L.) Hydrolysate and Their Cytoprotective Effects in Human Intestinal Caco-2<br>Cells. Journal of Agricultural and Food Chemistry, 2019, 67, 5772-5781. | 5.2  | 90        |
| 16 | The Colors of Health: Chemistry, Bioactivity, and Market Demand for Colorful Foods and Natural<br>Food Sources of Colorants. Annual Review of Food Science and Technology, 2020, 11, 145-182.                                                                             | 9.9  | 81        |
| 17 | Phenolic compounds from coffee by-products modulate adipogenesis-related inflammation,<br>mitochondrial dysfunction, and insulin resistance in adipocytes, via insulin/PI3K/AKT signaling<br>pathways. Food and Chemical Toxicology, 2019, 132, 110672.                   | 3.6  | 71        |
| 18 | Relationship of phenolic composition of selected purple maize (Zea mays L.) genotypes with their<br>anti-inflammatory, anti-adipogenic and anti-diabetic potential. Food Chemistry, 2019, 289, 739-750.                                                                   | 8.2  | 71        |

| #  | Article                                                                                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Effect of ultrasound treatment on the wet heating Maillard reaction between mung bean [ <i>Vigna<br/>radiate</i> (L.)] protein isolates and glucose and on structural and physicoâ€chemical properties of<br>conjugates. Journal of the Science of Food and Agriculture, 2016, 96, 1532-1540. | 3.5  | 66        |
| 20 | Antioxidant activity and protective effects of Alcalase-hydrolyzed soybean hydrolysate in human intestinal epithelial Caco-2 cells. Food Research International, 2018, 111, 256-264.                                                                                                          | 6.2  | 63        |
| 21 | Atmospheric cold plasma treatment of soybean protein isolate: insights into the structural, physicochemical, and allergenic characteristics. Journal of Food Science, 2021, 86, 68-77.                                                                                                        | 3.1  | 60        |
| 22 | Deciphering the Structural Network That Confers Stability to High Internal Phase Pickering<br>Emulsions by Cross-Linked Soy Protein Microgels and Their <i>In Vitro</i> Digestion Profiles. Journal<br>of Agricultural and Food Chemistry, 2020, 68, 9796-9803.                               | 5.2  | 58        |
| 23 | Deciphering the characteristics of soybean oleosome-associated protein in maintaining the stability of oleosomes as affected by pH. Food Research International, 2017, 100, 551-557.                                                                                                          | 6.2  | 56        |
| 24 | Effect of high intensity ultrasound on the structure and solubility of soy protein isolate-pectin complex. Ultrasonics Sonochemistry, 2021, 80, 105808.                                                                                                                                       | 8.2  | 53        |
| 25 | Differential scanning calorimetry study—Assessing the influence of composition of vegetable oils on oxidation. Food Chemistry, 2016, 194, 601-607.                                                                                                                                            | 8.2  | 52        |
| 26 | Structure, properties and potential bioactivities of high-purity insoluble fibre from soybean dregs<br>(Okara). Food Chemistry, 2021, 364, 130402.                                                                                                                                            | 8.2  | 44        |
| 27 | Structure remodeling of soy protein-derived amyloid fibrils mediated by epigallocatechin-3-gallate.<br>Biomaterials, 2022, 283, 121455.                                                                                                                                                       | 11.4 | 39        |
| 28 | Effect of ultrasound on the properties of rice bran protein and its chlorogenic acid complex.<br>Ultrasonics Sonochemistry, 2021, 79, 105758.                                                                                                                                                 | 8.2  | 38        |
| 29 | Secondary Structure and Subunit Composition of Soy Protein <i>In Vitro</i> Digested by Pepsin and Its<br>Relation with Digestibility. BioMed Research International, 2016, 2016, 1-11.                                                                                                        | 1.9  | 37        |
| 30 | Identification of an ACE-Inhibitory Peptide from Walnut Protein and Its Evaluation of the Inhibitory<br>Mechanism. International Journal of Molecular Sciences, 2018, 19, 1156.                                                                                                               | 4.1  | 37        |
| 31 | Effects of covalent modification with epigallocatechin-3-gallate on oleosin structure and ability to stabilize artificial oil body emulsions. Food Chemistry, 2021, 341, 128272.                                                                                                              | 8.2  | 37        |
| 32 | Ultrasound-assisted aqueous enzymatic extraction of oil from perilla ( <i>Perilla frutescens</i> L.)<br>seeds. CYTA - Journal of Food, 2014, 12, 16-21.                                                                                                                                       | 1.9  | 35        |
| 33 | Simplexâ€Centroid Mixture Design Applied to the Aqueous Enzymatic Extraction of Fatty Acidâ€Balanced<br>Oil from Mixed Seeds. JAOCS, Journal of the American Oil Chemists' Society, 2013, 90, 349-357.                                                                                        | 1.9  | 31        |
| 34 | The production of gel beads of soybean hull polysaccharides loaded with soy isoflavone and their pH-dependent release. Food Chemistry, 2020, 313, 126095.                                                                                                                                     | 8.2  | 30        |
| 35 | Dietary Bioactive Lipids: A Review on Absorption, Metabolism, and Health Properties. Journal of<br>Agricultural and Food Chemistry, 2021, 69, 8929-8943.                                                                                                                                      | 5.2  | 30        |
| 36 | Effect of ultrasound on the preparation of soy protein isolate-maltodextrin embedded hemp seed oil microcapsules and the establishment of oxidation kinetics models. Ultrasonics Sonochemistry, 2021, 77, 105700.                                                                             | 8.2  | 30        |

| #  | Article                                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Chinese bayberry (Myrica rubra) phenolics mitigated protein glycoxidation and formation of advanced glycation end-products: A mechanistic investigation. Food Chemistry, 2021, 361, 130102.                                                        | 8.2 | 30        |
| 38 | Covalent and non-covalent interactions of cyanidin-3- <i>O</i> -glucoside with milk proteins revealed modifications in protein conformational structures, digestibility, and allergenic characteristics. Food and Function, 2021, 12, 10107-10120. | 4.6 | 29        |
| 39 | Soy/whey protein isolates: interfacial properties and effects on the stability of oilâ€inâ€water emulsions.<br>Journal of the Science of Food and Agriculture, 2021, 101, 262-271.                                                                 | 3.5 | 28        |
| 40 | Emulsions co-stabilized by soy protein nanoparticles and tea saponin: Physical stability, rheological properties, oxidative stability, and lipid digestion. Food Chemistry, 2022, 387, 132891.                                                     | 8.2 | 27        |
| 41 | 3D confocal Raman imaging of oil-rich emulsion from enzyme-assisted aqueous extraction of extruded soybean powder. Food Chemistry, 2018, 249, 16-21.                                                                                               | 8.2 | 26        |
| 42 | Valorization of Soy Whey Wastewater: How Epigallocatechin-3-gallate Regulates Protein<br>Precipitation. ACS Sustainable Chemistry and Engineering, 2019, 7, 15504-15513.                                                                           | 6.7 | 25        |
| 43 | Effect of pH on physicochemical properties of oil bodies from different oil crops. Journal of Food<br>Science and Technology, 2019, 56, 49-58.                                                                                                     | 2.8 | 25        |
| 44 | Effect of the condition of spray-drying on the properties of the polypeptide-rich powders from enzyme-assisted aqueous extraction processing. Drying Technology, 2019, 37, 2105-2115.                                                              | 3.1 | 24        |
| 45 | Thermally treated soya bean oleosomes: the changes in their stability and associated proteins.<br>International Journal of Food Science and Technology, 2020, 55, 229-238.                                                                         | 2.7 | 24        |
| 46 | Identification and assessment of residual levels of the main oxidation product of<br>tert-butylhydroquinone in frying oils after heating and its cytotoxicity to RAW 264.7 cells. Food<br>Chemistry, 2018, 264, 293-300.                           | 8.2 | 23        |
| 47 | Effects of ultrasonic treatment on the gel properties of microbial transglutaminase crosslinked soy, whey and soy–whey proteins. Food Science and Biotechnology, 2019, 28, 1455-1464.                                                              | 2.6 | 22        |
| 48 | Ultrasonic pre-treatment modifies the pH-dependent molecular interactions between β-lactoglobulin<br>and dietary phenolics: Conformational structures and interfacial properties. Ultrasonics<br>Sonochemistry, 2021, 75, 105612.                  | 8.2 | 22        |
| 49 | Effects of Cavitation Jet Treatment on the Structure and Emulsification Properties of Oxidized Soy<br>Protein Isolate. Foods, 2021, 10, 2.                                                                                                         | 4.3 | 22        |
| 50 | Effects of Soybean Oil Body as a Milk Fat Substitute on Ice Cream: Physicochemical, Sensory and Digestive Properties. Foods, 2022, 11, 1504.                                                                                                       | 4.3 | 22        |
| 51 | Immobilization of Phospholipase A <sub>1</sub> and its Application in Soybean Oil Degumming. JAOCS,<br>Journal of the American Oil Chemists' Society, 2012, 89, 649-656.                                                                           | 1.9 | 21        |
| 52 | Effect of glycosylation on the mechanical properties of edible soy protein packaging film. European<br>Food Research and Technology, 2014, 238, 1049-1055.                                                                                         | 3.3 | 21        |
| 53 | Rhizomucor miehei lipase-catalysed synthesis of cocoa butter equivalent from palm mid-fraction and stearic acid: Characteristics and feasibility as cocoa butter alternative. Food Chemistry, 2021, 343, 128407.                                   | 8.2 | 20        |
| 54 | Efficient and Response Surface Optimized Aqueous Enzymatic Extraction of <i>Camellia oleifera</i><br>(Tea Seed) Oil Facilitated by Concurrent Calcium Chloride Addition. JAOCS, Journal of the American<br>Oil Chemists' Society, 2018, 95, 29-37. | 1.9 | 19        |

| #  | Article                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Immobilized CALB Catalyzed Transesterification of Soybean Oil and Phytosterol. Food Biophysics, 2018, 13, 208-215.                                                                                                                    | 3.0 | 19        |
| 56 | Effects of ultrasound treatment on physicoâ€chemical, functional properties and antioxidant activity of whey protein isolate in the presence of calcium lactate. Journal of the Science of Food and Agriculture, 2018, 98, 1522-1529. | 3.5 | 19        |
| 57 | Effects of glycation and acylation on the structural characteristics and physicochemical properties of soy protein isolate. Journal of Food Science, 2021, 86, 1737-1750.                                                             | 3.1 | 19        |
| 58 | Conformational and Functional Properties of Soybean Proteins Produced by Extrusion-Hydrolysis<br>Approach. International Journal of Analytical Chemistry, 2018, 2018, 1-11.                                                           | 1.0 | 18        |
| 59 | Oilâ€inâ€water Pickering emulsion stabilization with oppositely charged polysaccharide particles: chitin<br>nanocrystals/fucoidan complexes. Journal of the Science of Food and Agriculture, 2021, 101, 3003-3012.                    | 3.5 | 18        |
| 60 | Fat reduction in emulsion sausage using an enzymeâ€modified potato starch. Journal of the Science of<br>Food and Agriculture, 2008, 88, 1632-1637.                                                                                    | 3.5 | 17        |
| 61 | Effects of High Hydrostatic Pressure Pretreatment on the Functional and Structural Properties of<br>Rice Bran Protein Hydrolysates. Foods, 2022, 11, 29.                                                                              | 4.3 | 16        |
| 62 | Optimization of Ethanolâ€Ultrasoundâ€Assisted Destabilization of a Cream Recovered from Enzymatic<br>Extraction of Soybean Oil. JAOCS, Journal of the American Oil Chemists' Society, 2014, 91, 159-168.                              | 1.9 | 15        |
| 63 | Purification and identification of an ACE-inhibitory peptide from walnut protein hydrolysate.<br>European Food Research and Technology, 2014, 239, 333-338.                                                                           | 3.3 | 15        |
| 64 | The Influence of Supercritical Carbon Dioxide (SC O <sub>2</sub> ) on Electrolytes and<br>Hydrogenation of Soybean Oil. JAOCS, Journal of the American Oil Chemists' Society, 2017, 94, 993-1001.                                     | 1.9 | 15        |
| 65 | Physical-Chemical Properties of Edible Film Made from Soybean Residue and Citric Acid. Journal of Chemistry, 2018, 2018, 1-8.                                                                                                         | 1.9 | 15        |
| 66 | Stability Mechanism of Two Soybean Protein-Phosphatidylcholine Nanoemulsion Preparation Methods<br>from a Structural Perspective: A Raman Spectroscopy Analysis. Scientific Reports, 2019, 9, 6985.                                   | 3.3 | 15        |
| 67 | Application of magnetic immobilized papain on passivated rice bran lipase. International Journal of<br>Biological Macromolecules, 2020, 157, 51-59.                                                                                   | 7.5 | 15        |
| 68 | The texture of plant proteinâ€based meat analogs by high moisture extrusion: A review. Journal of<br>Texture Studies, 2023, 54, 351-364.                                                                                              | 2.5 | 15        |
| 69 | Crude Wax Extracted from Rice Bran Oil Improves Oleogel Properties and Oxidative Stability.<br>European Journal of Lipid Science and Technology, 2021, 123, 2000091.                                                                  | 1.5 | 14        |
| 70 | Oil bodies extracted from high-oil soybeans ( <i>Glycine max</i> ) exhibited higher oxidative and physical stability than oil bodies from high-protein soybeans. Food and Function, 2022, 13, 3271-3282.                              | 4.6 | 14        |
| 71 | Effect of High Pressure Treatment on Interfacial Properties, Structure and Oxidative Stability of Soy<br>Protein Isolate-Stabilized Emulsions. Journal of Oleo Science, 2019, 68, 409-418.                                            | 1.4 | 13        |
| 72 | The Layered Encapsulation of Vitamin B2 and β-Carotene in Multilayer Alginate/Chitosan Gel<br>Microspheres: Improving the Bioaccessibility of Vitamin B2 and β-Carotene. Foods, 2022, 11, 20.                                         | 4.3 | 13        |

| #  | Article                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Tunable luminescence and energy transfer properties of a novel<br>Na <sub>4</sub> Ca <sub>4</sub> Si <sub>6</sub> O <sub>18</sub> :Ce <sup>3+</sup> ,Mn <sup>2+</sup><br>phosphor. New Journal of Chemistry, 2015, 39, 4753-4758.                              | 2.8 | 12        |
| 74 | Advancement on Milk Fat Globule Membrane: Separation, Identification, and Functional Properties.<br>Frontiers in Nutrition, 2021, 8, 807284.                                                                                                                   | 3.7 | 12        |
| 75 | Relationship between flexibility and interfacial functional properties of soy protein isolate:<br>succinylation modification. Journal of the Science of Food and Agriculture, 2022, 102, 6454-6463.                                                            | 3.5 | 12        |
| 76 | Optimization of magnetic immobilized phospholipase A1 degumming process for soybean oil using response surface methodology. European Food Research and Technology, 2013, 237, 811-817.                                                                         | 3.3 | 11        |
| 77 | Ultrasound-assisted Aqueous Enzymatic Extraction of Corn Germ Oil: Analysis of Quality and Antioxidant Activity. Journal of Oleo Science, 2018, 67, 745-754.                                                                                                   | 1.4 | 11        |
| 78 | <i>In vitro</i> Simulated Digestion and Microstructure of Peppermint Oil Nanoemulsion.<br>Journal of Oleo Science, 2019, 68, 863-871.                                                                                                                          | 1.4 | 11        |
| 79 | Protective Effect of Iridoid Glycosides of the Leaves of Syringa oblata Lindl. on Dextran Sulfate<br>Sodium-Induced Ulcerative Colitis by Inhibition of the TLR2/4/MyD88/NF- <i>κ</i> B Signaling Pathway.<br>BioMed Research International, 2020, 2020, 1-13. | 1.9 | 11        |
| 80 | Stability and digestibility of encapsulated lycopene in different emulsion systems stabilized by<br>acidâ€modified soybean lipophilic protein. Journal of the Science of Food and Agriculture, 2022, 102,<br>6146-6155.                                        | 3.5 | 11        |
| 81 | Effect of the interaction between myofibrillar protein and heat-induced soy protein isolates on gel properties. CYTA - Journal of Food, O, , 1-8.                                                                                                              | 1.9 | 10        |
| 82 | Preparation of Margarine Stock Rich in Naturally Bioactive Components by Enzymatic<br>Interesterification. Journal of Oleo Science, 2018, 67, 29-37.                                                                                                           | 1.4 | 10        |
| 83 | Lipase catalysis of <i>α</i> â€linolenic acidâ€rich medium―and longâ€chain triacylglycerols from perilla oil<br>and mediumâ€chain triacylglycerols with reduced byâ€products. Journal of the Science of Food and<br>Agriculture, 2020, 100, 4565-4574.         | 3.5 | 10        |
| 84 | Ninety-Day Nephrotoxicity Evaluation of 3-MCPD 1-Monooleate and 1-Monostearate Exposures in Male<br>Sprague Dawley Rats Using Proteomic Analysis. Journal of Agricultural and Food Chemistry, 2020, 68,<br>2765-2772.                                          | 5.2 | 10        |
| 85 | Immobilization of cellulase on magnetic nanoparticles for rice bran oil extraction in a magnetic fluidized bed. International Journal of Food Engineering, 2022, 18, 15-26.                                                                                    | 1.5 | 10        |
| 86 | Effects of frying on polar material and free fatty acids in soybean oils. International Journal of Food<br>Science and Technology, 2013, 48, 1218-1223.                                                                                                        | 2.7 | 9         |
| 87 | Effect of Oxidation on Quality of Chiba Tofu Produced by Soy Isolate Protein When Subjected to Storage. Foods, 2020, 9, 1877.                                                                                                                                  | 4.3 | 9         |
| 88 | Deciphering Changes in the Structure and IgE-Binding Ability of Ovalbumin Glycated by α-Dicarbonyl<br>Compounds under Simulated Heating. Journal of Agricultural and Food Chemistry, 2022, 70, 1984-1995.                                                      | 5.2 | 9         |
| 89 | Extraction and the Fatty Acid Profile of <i>Rosa acicularis</i> Seed Oil. Journal of Oleo<br>Science, 2017, 66, 1301-1310.                                                                                                                                     | 1.4 | 8         |
| 90 | Formation and Properties of Recombined Soymilk and Cow's Milk Gels: Effect of Glucono-δ-lactone.<br>Journal of Oleo Science, 2018, 67, 885-892.                                                                                                                | 1.4 | 8         |

| #   | Article                                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Enzymatic esterification of rice bran oil and phytosterol in supercritical CO <sub>2</sub> . Journal of<br>Food Processing and Preservation, 2019, 43, e14066.                                                                                                          | 2.0 | 8         |
| 92  | Detection of Phosphatidylcholine Content in Crude Oil with Bio-Enzyme Screen-Printed Electrode.<br>Food Analytical Methods, 2019, 12, 229-238.                                                                                                                          | 2.6 | 8         |
| 93  | Combination of Alcalase 2.4 L and CaCl <sub>2</sub> for aqueous extraction of peanut oil. Journal of Food Science, 2020, 85, 1772-1780.                                                                                                                                 | 3.1 | 8         |
| 94  | Fabrication and characterization of β-carotene emulsions stabilized by soy oleosin and lecithin mixtures with a composition mimicking natural soy oleosomes. Food and Function, 2021, 12, 10875-10886.                                                                  | 4.6 | 8         |
| 95  | Improving interface-related functions and antioxidant activities of soy protein isolate by covalent conjugation with chlorogenic acid. Journal of Food Measurement and Characterization, 2022, 16, 202-213.                                                             | 3.2 | 8         |
| 96  | Intake of high-purity insoluble dietary fiber from <i>Okara</i> for the amelioration of colonic environment disturbance caused by acute ulcerative colitis. Food and Function, 2022, 13, 213-226.                                                                       | 4.6 | 8         |
| 97  | Effect of pH on Freeze-thaw Stability of Glycated Soy Protein Isolate. Journal of Oleo Science, 2019, 68, 281-290.                                                                                                                                                      | 1.4 | 7         |
| 98  | Heating Quality and Stability of Aqueous Enzymatic Extraction of Fatty Acid-Balanced Oil in<br>Comparison with Other Blended Oils. Journal of Chemistry, 2014, 2014, 1-8.                                                                                               | 1.9 | 6         |
| 99  | Preparation of the Pt/CNTs Catalyst and Its Application to the Fabrication of Hydrogenated Soybean<br>Oil Containing a Low Content of Trans Fatty Acids Using the Solid Polymer Electrolyte Reactor.<br>Journal of Nanoscience and Nanotechnology, 2018, 18, 5566-5574. | 0.9 | 6         |
| 100 | Study on the Electrochemical Hydrogenation of Soybean Oil under H <sub>2</sub><br>Conditions. Journal of Oleo Science, 2019, 68, 311-320.                                                                                                                               | 1.4 | 6         |
| 101 | Synthesis and Application of Nanomagnetic Immobilized Phospholipase C. Journal of Chemistry, 2019, 2019, 1-9.                                                                                                                                                           | 1.9 | 6         |
| 102 | <scp>NaCl</scp> induces flocculation and lipid oxidation of soybean oil body emulsions recovered by neutral aqueous extraction. Journal of the Science of Food and Agriculture, 2021, , .                                                                               | 3.5 | 6         |
| 103 | Thermal and crystal characteristics of enzymatically interesterified fats of fatty acid-balanced oil and fully hydrogenated soybean oil in supercritical CO <sub>2</sub> system. International Journal of Food Properties, 2017, 20, 2675-2685.                         | 3.0 | 5         |
| 104 | Recovery of high valueâ€added protein from enzymeâ€assisted aqueous extraction ( EAE ) of soybeans by<br>deadâ€end ultrafiltration. Food Science and Nutrition, 2019, 7, 858-868.                                                                                       | 3.4 | 5         |
| 105 | Development of an Efficient Method to Extract DNA from Refined Soybean Oil. Food Analytical<br>Methods, 2021, 14, 196-207.                                                                                                                                              | 2.6 | 4         |
| 106 | Purification of βâ€carotene 15,15′â€monooxygenase from pig intestine and its enzymatic hydrolysis of<br>pigment in soybean oil. International Journal of Food Science and Technology, 2019, 54, 480-489.                                                                | 2.7 | 3         |
| 107 | Study of electrochemically treated walnut emulsion and its stability. Journal of Food Process<br>Engineering, 2020, 43, e13003.                                                                                                                                         | 2.9 | 3         |
| 108 | Influence of Pre-/Postultrasound on Forming a Molten Globule-Like Conformation and Improving the<br>Emulsifying Properties of Thermally Induced Soybean Protein Aggregates. ACS Food Science &<br>Technology, 2021, 1, 1514-1522.                                       | 2.7 | 3         |

| #   | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Variations in oral microbiota and salivary proteomics reveal distinct patterns in polysensitized individuals. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 1899-1902.                          | 5.7 | 3         |
| 110 | Preparation and characterization of Niâ€Agx/SBAâ€15 and its catalytic properties on the hydrogenation of soybean oil. Journal of Food Process Engineering, 2018, 41, e12926.                                              | 2.9 | 2         |
| 111 | Changes of High-Purity Insoluble Fiber from Soybean Dregs (Okara) after Being Fermented by Colonic<br>Flora and Its Adsorption Capacity. Foods, 2021, 10, 2485.                                                           | 4.3 | 2         |
| 112 | Enzymatic preparation of structured TAG containing conjugated linoleic acid (CLA) at solvent-free.<br>International Journal of Food Engineering, 2020, 16, .                                                              | 1.5 | 2         |
| 113 | Homogenate Extraction of Polysaccharides from Pine Nut Meal: Optimization and Comparison with<br>Other Extraction Methods by Characterizing Their Extracts. Journal of Food Quality, 2020, 2020, 1-9.                     | 2.6 | 1         |
| 114 | Construction of magnetic switchable Pickering interfacial catalysis system and its application in the<br>hydrolysis of crude rice bran oil. International Journal of Food Science and Technology, 2022, 57,<br>2879-2885. | 2.7 | 1         |
| 115 | Effect of Extruding Full-Fat Soy Flakes on Trans Fat Content. Scientific World Journal, The, 2014, 2014, 1-6.                                                                                                             | 2.1 | 0         |