Jaeseok Yi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2671475/publications.pdf

Version: 2024-02-01

516710 610901 1,430 25 16 24 h-index citations g-index papers 25 25 25 2704 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Laser writing of nitrogen-doped silicon carbide for biological modulation. Science Advances, 2020, 6, .	10.3	33
2	Structured silicon for revealing transient and integrated signal transductions in microbial systems. Science Advances, 2020, 6, eaay2760.	10.3	14
3	Photoelectrochemical modulation of neuronal activity with free-standing coaxial silicon nanowires. Nature Nanotechnology, 2018, 13, 260-266.	31.5	185
4	Rational design of silicon structures for optically controlled multiscale biointerfaces. Nature Biomedical Engineering, 2018, 2, 508-521.	22.5	183
5	Texturing Silicon Nanowires for Highly Localized Optical Modulation of Cellular Dynamics. Nano Letters, 2018, 18, 4487-4492.	9.1	45
6	Plasmonic Photothermal Gold Bipyramid Nanoreactors for Ultrafast Real-Time Bioassays. Journal of the American Chemical Society, 2017, 139, 8054-8057.	13.7	91
7	3D calcite heterostructures for dynamic and deformable mineralized matrices. Nature Communications, 2017, 8, 509.	12.8	7
8	Chemical and biological sensors based on defect-engineered graphene mesh field-effect transistors. Nano Convergence, 2016, 3, 14.	12.1	14
9	Reversible and Irreversible Responses of Defect-Engineered Graphene-Based Electrolyte-Gated pH Sensors. ACS Applied Materials & Samp; Interfaces, 2016, 8, 834-839.	8.0	45
10	Graphene meshes decorated with palladium nanoparticles for hydrogen detection. Journal Physics D: Applied Physics, 2015, 48, 475103.	2.8	13
11	Direct Synthesis of Graphene Meshes and Semipermanent Electrical Doping. Journal of Physical Chemistry Letters, 2013, 4, 2099-2104.	4.6	29
12	Engineering Electronic Properties of Graphene by Coupling with Si-Rich, Two-Dimensional Islands. ACS Nano, 2013, 7, 301-307.	14.6	30
13	Bioinspired Morphogenesis of Highly Intricate and Symmetric Silica Nanostructures. Nano Letters, 2012, 12, 3743-3748.	9.1	16
14	Surface Polarity-Dependent Cathodoluminescence in Hydrothermally Grown ZnO Hexagonal Rods. Journal of Physical Chemistry C, 2012, 116, 456-460.	3.1	27
15	Site-specific synthesis of ZnO nanocrystalline networks via a hydrothermal method. Metals and Materials International, 2012, 18, 845-849.	3.4	2
16	Simple, Large-Scale Patterning of Hydrophobic ZnO Nanorod Arrays. ACS Applied Materials & Samp; Interfaces, 2012, 4, 3910-3915.	8.0	33
17	ZnO nanorods-graphene hybrid structures for enhanced current spreading and light extraction in GaN-based light emitting diodes. Applied Physics Letters, 2012, 100, .	3.3	38
18	Site-Specific Design of Cone-Shaped Si Nanowires by Exploiting Nanoscale Surface Diffusion for Optimal Photoabsorption. Chemistry of Materials, 2011, 23, 3902-3906.	6.7	10

#	Article	IF	CITATIONS
19	Morphology-Controlled Three-Dimensional Nanoarchitectures Produced by Exploiting Vertical and In-Plane Crystallographic Orientations in Hydrothermal ZnO Crystals. Crystal Growth and Design, 2011, 11, 4927-4932.	3.0	32
20	Vertically aligned ZnO nanorods and graphene hybrid architectures for high-sensitive flexible gas sensors. Sensors and Actuators B: Chemical, 2011, 155, 264-269.	7.8	273
21	Optical properties of laterally aligned Si nanowires for transparent electronics applications. Nano Research, 2011, 4, 817-823.	10.4	4
22	Synthesis and transfer of Si nanowire arrays embedded in photo-sensitive polymer films for non-planar electronics. Journal Physics D: Applied Physics, 2011, 44, 015501.	2.8	0
23	Synthesis of ZnO nanotubes and nanotube-nanorod hybrid hexagonal networks using a hexagonally close-packed colloidal monolayer template. Journal of Materials Chemistry, 2010, 20, 5136.	6.7	18
24	Vertical Pillar-Superlattice Array and Graphene Hybrid Light Emitting Diodes. Nano Letters, 2010, 10, 2783-2788.	9.1	129
25	ZnO Nanorodâ^'Graphene Hybrid Architectures for Multifunctional Conductors. Journal of Physical Chemistry C, 2009, 113, 19134-19138.	3.1	159