
Steven O Marx

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2671241/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Adrenergic Regulation of Calcium Channels in the Heart. Annual Review of Physiology, 2022, 84, 285-306.	5.6	29
2	Detecting Cardiovascular Protein-Protein Interactions by Proximity Proteomics. Circulation Research, 2022, 130, 273-287.	2.0	11
3	Increased Ca2+ influx through CaV1.2 drives aortic valve calcification. JCI Insight, 2022, 7, .	2.3	10
4	Fibroblast growth factor homologous factors serve as a molecular rheostat in tuning arrhythmogenic cardiac late sodium current. , 2022, 1, 1-13.		8
5	Vasculature remodeling by pressure, caveolae, calcium, and kinases. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2204968119.	3.3	0
6	Adrenergic Ca _V 1.2 Activation via Rad Phosphorylation Converges at α _{1C} I-II Loop. Circulation Research, 2021, 128, 76-88.	2.0	39
7	3-Year Outcomes of Transcatheter Mitral Valve Repair in Patients With HeartÂFailure. Journal of the American College of Cardiology, 2021, 77, 1029-1040.	1.2	113
8	Use of Proximity Labeling in Cardiovascular Research. JACC Basic To Translational Science, 2021, 6, 598-609.	1.9	2
9	Probing ion channel neighborhoods using proximity proteomics. Methods in Enzymology, 2021, 654, 115-136.	0.4	2
10	Attenuating persistent sodium current–induced atrial myopathy and fibrillation by preventing mitochondrial oxidative stress. JCI Insight, 2021, 6, .	2.3	17
11	Ticagrelor alone vs. ticagrelor plus aspirin following percutaneous coronary intervention in patients with non-ST-segment elevation acute coronary syndromes: TWILIGHT-ACS. European Heart Journal, 2020, 41, 3533-3545.	1.0	93
12	The quest to identify the mechanism underlying adrenergic regulation of cardiac Ca2+ channels. Channels, 2020, 14, 123-131.	1.5	10
13	Removing the Stress From Hypertension-Induced Atrial Fibrillation. JACC Basic To Translational Science, 2020, 5, 616-618.	1.9	0
14	Polymer-based or Polymer-free Stents in Patients at High Bleeding Risk. New England Journal of Medicine, 2020, 382, 1208-1218.	13.9	207
15	Mechanism of adrenergic CaV1.2 stimulation revealed by proximity proteomics. Nature, 2020, 577, 695-700.	13.7	163
16	An interaction between the III-IV linker and CTD in NaV1.5 confers regulation of inactivation by CaM and FHF. Journal of General Physiology, 2020, 152, .	0.9	20
17	Fibroblast growth factor homologous factors tune arrhythmogenic late NaV1.5 current in calmodulin binding–deficient channels. JCI Insight, 2020, 5, .	2.3	16
18	Clinical Outcomes Before and After Complete Everolimus-Eluting Bioresorbable Scaffold Resorption. Circulation, 2019, 140, 1895-1903.	1.6	57

#	Article	IF	CITATIONS
19	Ticagrelor with or without Aspirin in High-Risk Patients after PCI. New England Journal of Medicine, 2019, 381, 2032-2042.	13.9	683
20	Secretoneurin to the Rescue?. Circulation: Arrhythmia and Electrophysiology, 2019, 12, e007298.	2.1	3
21	Heterogeneity of the action potential duration is required for sustained atrial fibrillation. JCI Insight, 2019, 4, .	2.3	17
22	Cardiac CaV1.2 channels require β subunits for β-adrenergic–mediated modulation but not trafficking. Journal of Clinical Investigation, 2019, 129, 647-658.	3.9	49
23	Roles and Regulation of Voltage-gated Calcium Channels in Arrhythmias. Journal of Innovations in Cardiac Rhythm Management, 2019, 10, 3874-3880.	0.2	8
24	Transcatheter Mitral-Valve Repair in Patients with Heart Failure. New England Journal of Medicine, 2018, 379, 2307-2318.	13.9	2,079
25	1-Year Clinical Outcomes of All-Comer Patients Treated With the Dual-Therapy COMBO Stent. JACC: Cardiovascular Interventions, 2018, 11, 1969-1978.	1.1	21
26	Blinded outcomes and angina assessment of coronary bioresorbable scaffolds: 30-day and 1-year results from the ABSORB IV randomised trial. Lancet, The, 2018, 392, 1530-1540.	6.3	103
27	Calmodulin limits pathogenic Na+ channel persistent current. Journal of General Physiology, 2017, 149, 277-293.	0.9	50
28	3-Year Clinical Outcomes WithÂEverolimus-Eluting BioresorbableÂCoronary Scaffolds. Journal of the American College of Cardiology, 2017, 70, 2852-2862.	1.2	202
29	Proteolytic cleavage and PKA phosphorylation of α _{1C} subunit are not required for adrenergic regulation of Ca _V 1.2 in the heart. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 9194-9199.	3.3	40
30	Novel approaches to examine the regulation of voltage-gated calcium channels in the heart. Current Molecular Pharmacology, 2015, 8, 61-68.	0.7	6
31	The PDZ Motif of the α1C Subunit Is Not Required for Surface Trafficking and Adrenergic Modulation of CaV1.2 Channel in the Heart. Journal of Biological Chemistry, 2015, 290, 2166-2174.	1.6	9
32	Positions of the cytoplasmic end of BK α SO helix relative to S1–S6 and of β1 TM1 and TM2 relative to S0–S6. Journal of General Physiology, 2015, 145, 185-199.	0.9	8
33	Everolimus-Eluting Bioresorbable Scaffolds for Coronary Artery Disease. New England Journal of Medicine, 2015, 373, 1905-1915.	13.9	554
34	Aberrant sodium influx causes cardiomyopathy and atrial fibrillation in mice. Journal of Clinical Investigation, 2015, 126, 112-122.	3.9	68
35	A selective microRNA-based strategy inhibits restenosis while preserving endothelial function. Journal of Clinical Investigation, 2014, 124, 4102-4114.	3.9	157
36	Treatment of experimental asthma using a single small molecule with antiâ€inflammatory and BK channelâ€activating properties. FASEB Journal, 2013, 27, 4975-4986.	0.2	31

#	Article	IF	CITATIONS
37	Dysfunctional ryanodine receptors in the heart: New insights into complex cardiovascular diseases. Journal of Molecular and Cellular Cardiology, 2013, 58, 225-231.	0.9	71
38	Reprogramming of the MicroRNA Transcriptome Mediates Resistance to Rapamycin. Journal of Biological Chemistry, 2013, 288, 6034-6044.	1.6	41
39	Reduced vascular smooth muscle BK channel current underlies heart failureâ€induced vasoconstriction in mice. FASEB Journal, 2013, 27, 1859-1867.	0.2	20
40	Positions of β2 and β3 subunits in the large-conductance calcium- and voltage-activated BK potassium channel. Journal of General Physiology, 2013, 141, 105-117.	0.9	22
41	β-Adrenergic Regulation of the L-type Ca ²⁺ Channel Does Not Require Phosphorylation of α _{1C} Ser ¹⁷⁰⁰ . Circulation Research, 2013, 113, 871-880.	2.0	52
42	Orientations and Proximities of the Extracellular Ends of Transmembrane Helices SO and S4 in Open and Closed BK Potassium Channels. PLoS ONE, 2013, 8, e58335.	1.1	7
43	Characterization of KCNQ1 atrial fibrillation mutations reveals distinct dependence on KCNE1. Journal of General Physiology, 2012, 139, 135-144.	0.9	34
44	Mice With Cardiac Overexpression of Peroxisome Proliferator–Activated Receptor γ Have Impaired Repolarization and Spontaneous Fatal Ventricular Arrhythmias. Circulation, 2011, 124, 2812-2821.	1.6	57
45	Vascular Smooth Muscle Cell Proliferation in Restenosis. Circulation: Cardiovascular Interventions, 2011, 4, 104-111.	1.4	270
46	Cardiac Lâ€ŧype calcium channel (Ca _v 1.2) associates with γ subunits. FASEB Journal, 2011, 25, 928-936.	0.2	67
47	Location of modulatory β subunits in BK potassium channels. Journal of General Physiology, 2010, 135, 449-459.	0.9	54
48	Molecular Mechanisms, and Selective Pharmacological Rescue, of Rem-Inhibited Ca _V 1.2 Channels in Heart. Circulation Research, 2010, 107, 620-630.	2.0	50
49	Rapamycin Regulates Endothelial Cell Migration through Regulation of the Cyclin-dependent Kinase Inhibitor p27Kip1. Journal of Biological Chemistry, 2010, 285, 11991-11997.	1.6	52
50	The BK potassium channel in the vascular smooth muscle and kidney: α- and β-subunits. Kidney International, 2010, 78, 963-974.	2.6	77
51	Location of the Â4 Transmembrane Helices in the BK Potassium Channel. Journal of Neuroscience, 2009, 29, 8321-8328.	1.7	42
52	Location of KCNE1 relative to KCNQ1 in the I _{KS} potassium channel by disulfide cross-linking of substituted cysteines. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 743-748.	3.3	84
53	Protein Kinase C Isoforms Differentially Phosphorylate Ca _v 1.2 α _{1c} . Biochemistry, 2009, 48, 6674-6683.	1.2	53
54	The Locations of the Beta4 Transmembrane Helices in the BK Channel. Biophysical Journal, 2009, 96, 475a.	0.2	0

#	Article	IF	CITATIONS
55	Ion Channels, Transporters, and Pumps as Targets for Heart Failure Therapy. Journal of Cardiovascular Pharmacology, 2009, 54, 273-278.	0.8	7
56	Leptin-enhanced neointimal hyperplasia is reduced by mTOR and PI3K inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 19006-19011.	3.3	55
57	Locations of the β1 transmembrane helices in the BK potassium channel. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 10727-10732.	3.3	63
58	Position and Role of the BK Channel α Subunit SO Helix Inferred from Disulfide Crosslinking. Journal of General Physiology, 2008, 131, 537-548.	0.9	46
59	Protein Kinase G Phosphorylates Ca _v 1.2 α _{1c} and β ₂ Subunits. Circulation Research, 2007, 101, 465-474.	2.0	103
60	Defining the BK channel domains required for beta1-subunit modulation. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 5096-5101.	3.3	69
61	Activation of the BK (SLO1) Potassium Channel by Mallotoxin. Journal of Biological Chemistry, 2005, 280, 30882-30887.	1.6	59
62	Ser1928 Is a Common Site for Cav1.2 Phosphorylation by Protein Kinase C Isoforms. Journal of Biological Chemistry, 2005, 280, 207-214.	1.6	103
63	Assembly of a Ca2+-dependent BK channel signaling complex by binding to β2 adrenergic receptor. EMBO Journal, 2004, 23, 2196-2205.	3.5	99
64	Direct interaction between BKCa potassium channel and microtubule-associated protein 1A. FEBS Letters, 2004, 570, 143-148.	1.3	34
65	Ion channel macromolecular complexes in the heart. Journal of Molecular and Cellular Cardiology, 2003, 35, 37-44.	0.9	23
66	Immunophilins and Coupled Gating of Ryanodine Receptors. Current Topics in Medicinal Chemistry, 2003, 3, 1383-1391.	1.0	44
67	Requirement of a Macromolecular Signaling Complex for beta Adrenergic Receptor Modulation of the KCNQ1-KCNE1 Potassium Channel. Science, 2002, 295, 496-499.	6.0	668
68	Regulation of Ryanodine Receptors via Macromolecular Complexes A Novel Role for Leucine/Isoleucine Zippers. Trends in Cardiovascular Medicine, 2002, 12, 166-170.	2.3	76
69	Regulation of the ryanodine receptor in heart failure. Basic Research in Cardiology, 2002, 97, 1-1.	2.5	26
70	Progression of heart failure: is protein kinase a hyperphosphorylation of the ryanodine receptor a contributing factor?. Circulation, 2002, 105, 272-5.	1.6	25
71	Dilated Cardiomyopathy and Sudden Death Resulting From Constitutive Activation of Protein Kinase A. Circulation Research, 2001, 89, 997-1004.	2.0	256
72	FKBP12 Binding Modulates Ryanodine Receptor Channel Gating. Journal of Biological Chemistry, 2001, 276, 16931-16935.	1.6	145

#	Article	IF	CITATIONS
73	Phosphorylation-Dependent Regulation of Ryanodine Receptors. Journal of Cell Biology, 2001, 153, 699-708.	2.3	275
74	Bench to Bedside. Circulation, 2001, 104, 852-855.	1.6	354
75	Coupled Gating Between Cardiac Calcium Release Channels (Ryanodine Receptors). Circulation Research, 2001, 88, 1151-1158.	2.0	365
76	Role for p27 ^{Kip1} in Vascular Smooth Muscle Cell Migration. Circulation, 2001, 103, 2967-2972.	1.6	173
77	PKA Phosphorylation Dissociates FKBP12.6 from the Calcium Release Channel (Ryanodine Receptor). Cell, 2000, 101, 365-376.	13.5	1,856
78	Inhibition of Intimal Thickening After Balloon Angioplasty in Porcine Coronary Arteries by Targeting Regulators of the Cell Cycle. Circulation, 1999, 99, 2164-2170.	1.6	463
79	Cell Cycle Progression and Proliferation Despite 4BP-1 Dephosphorylation. Molecular and Cellular Biology, 1999, 19, 6041-6047.	1.1	30
80	FKBP12 Modulates Gating of the Ryanodine Receptor/Calcium Release Channela. Annals of the New York Academy of Sciences, 1998, 853, 149-156.	1.8	27
81	Rapamycin-FKBP Inhibits Cell Cycle Regulators of Proliferation in Vascular Smooth Muscle Cells. Circulation Research, 1995, 76, 412-417.	2.0	470