Steven O Marx

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2671241/publications.pdf

Version: 2024-02-01

57758 69250 11,852 81 44 77 citations h-index g-index papers 83 83 83 11041 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Transcatheter Mitral-Valve Repair in Patients with Heart Failure. New England Journal of Medicine, 2018, 379, 2307-2318.	27.0	2,079
2	PKA Phosphorylation Dissociates FKBP12.6 from the Calcium Release Channel (Ryanodine Receptor). Cell, 2000, 101, 365-376.	28.9	1,856
3	Ticagrelor with or without Aspirin in High-Risk Patients after PCI. New England Journal of Medicine, 2019, 381, 2032-2042.	27.0	683
4	Requirement of a Macromolecular Signaling Complex for beta Adrenergic Receptor Modulation of the KCNQ1-KCNE1 Potassium Channel. Science, 2002, 295, 496-499.	12.6	668
5	Everolimus-Eluting Bioresorbable Scaffolds for Coronary Artery Disease. New England Journal of Medicine, 2015, 373, 1905-1915.	27.0	554
6	Rapamycin-FKBP Inhibits Cell Cycle Regulators of Proliferation in Vascular Smooth Muscle Cells. Circulation Research, 1995, 76, 412-417.	4.5	470
7	Inhibition of Intimal Thickening After Balloon Angioplasty in Porcine Coronary Arteries by Targeting Regulators of the Cell Cycle. Circulation, 1999, 99, 2164-2170.	1.6	463
8	Coupled Gating Between Cardiac Calcium Release Channels (Ryanodine Receptors). Circulation Research, 2001, 88, 1151-1158.	4.5	365
9	Bench to Bedside. Circulation, 2001, 104, 852-855.	1.6	354
10	Phosphorylation-Dependent Regulation of Ryanodine Receptors. Journal of Cell Biology, 2001, 153, 699-708.	5.2	275
11	Vascular Smooth Muscle Cell Proliferation in Restenosis. Circulation: Cardiovascular Interventions, 2011, 4, 104-111.	3.9	270
12	Dilated Cardiomyopathy and Sudden Death Resulting From Constitutive Activation of Protein Kinase A. Circulation Research, 2001, 89, 997-1004.	4.5	256
13	Polymer-based or Polymer-free Stents in Patients at High Bleeding Risk. New England Journal of Medicine, 2020, 382, 1208-1218.	27.0	207
14	3-Year Clinical Outcomes WithÂEverolimus-Eluting BioresorbableÂCoronary Scaffolds. Journal of the American College of Cardiology, 2017, 70, 2852-2862.	2.8	202
15	Role for p27 ^{Kip1} in Vascular Smooth Muscle Cell Migration. Circulation, 2001, 103, 2967-2972.	1.6	173
16	Mechanism of adrenergic CaV1.2 stimulation revealed by proximity proteomics. Nature, 2020, 577, 695-700.	27.8	163
17	A selective microRNA-based strategy inhibits restenosis while preserving endothelial function. Journal of Clinical Investigation, 2014, 124, 4102-4114.	8.2	157
18	FKBP12 Binding Modulates Ryanodine Receptor Channel Gating. Journal of Biological Chemistry, 2001, 276, 16931-16935.	3.4	145

#	Article	IF	CITATIONS
19	3-Year Outcomes of Transcatheter Mitral Valve Repair in Patients With HeartÂFailure. Journal of the American College of Cardiology, 2021, 77, 1029-1040.	2.8	113
20	Ser1928 Is a Common Site for Cav1.2 Phosphorylation by Protein Kinase C Isoforms. Journal of Biological Chemistry, 2005, 280, 207-214.	3.4	103
21	Protein Kinase G Phosphorylates Ca $\langle sub \rangle v \langle sub \rangle$ 1.2 $\hat{l}_{\pm} \langle sub \rangle 1c \langle sub \rangle$ and $\hat{l}^2 \langle sub \rangle 2 \langle sub \rangle$ Subunits. Circulation Research, 2007, 101, 465-474.	4.5	103
22	Blinded outcomes and angina assessment of coronary bioresorbable scaffolds: 30-day and 1-year results from the ABSORB IV randomised trial. Lancet, The, 2018, 392, 1530-1540.	13.7	103
23	Assembly of a Ca2+-dependent BK channel signaling complex by binding to \hat{I}^2 2 adrenergic receptor. EMBO Journal, 2004, 23, 2196-2205.	7.8	99
24	Ticagrelor alone vs. ticagrelor plus aspirin following percutaneous coronary intervention in patients with non-ST-segment elevation acute coronary syndromes: TWILIGHT-ACS. European Heart Journal, 2020, 41, 3533-3545.	2.2	93
25	Location of KCNE1 relative to KCNQ1 in the I _{KS} potassium channel by disulfide cross-linking of substituted cysteines. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 743-748.	7.1	84
26	The BK potassium channel in the vascular smooth muscle and kidney: \hat{l}_{\pm} - and \hat{l}^2 -subunits. Kidney International, 2010, 78, 963-974.	5.2	77
27	Regulation of Ryanodine Receptors via Macromolecular Complexes A Novel Role for Leucine/Isoleucine Zippers. Trends in Cardiovascular Medicine, 2002, 12, 166-170.	4.9	76
28	Dysfunctional ryanodine receptors in the heart: New insights into complex cardiovascular diseases. Journal of Molecular and Cellular Cardiology, 2013, 58, 225-231.	1.9	71
29	Defining the BK channel domains required for beta1-subunit modulation. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 5096-5101.	7.1	69
30	Aberrant sodium influx causes cardiomyopathy and atrial fibrillation in mice. Journal of Clinical Investigation, 2015, 126, 112-122.	8.2	68
31	Cardiac Lâ€type calcium channel (Ca _v 1.2) associates with γ subunits. FASEB Journal, 2011, 25, 928-936.	0.5	67
32	Locations of the \hat{I}^21 transmembrane helices in the BK potassium channel. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 10727-10732.	7.1	63
33	Activation of the BK (SLO1) Potassium Channel by Mallotoxin. Journal of Biological Chemistry, 2005, 280, 30882-30887.	3.4	59
34	Mice With Cardiac Overexpression of Peroxisome Proliferator–Activated Receptor γ Have Impaired Repolarization and Spontaneous Fatal Ventricular Arrhythmias. Circulation, 2011, 124, 2812-2821.	1.6	57
35	Clinical Outcomes Before and After Complete Everolimus-Eluting Bioresorbable Scaffold Resorption. Circulation, 2019, 140, 1895-1903.	1.6	57
36	Leptin-enhanced neointimal hyperplasia is reduced by mTOR and PI3K inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 19006-19011.	7.1	55

3

#	Article	IF	CITATIONS
37	Location of modulatory \hat{l}^2 subunits in BK potassium channels. Journal of General Physiology, 2010, 135, 449-459.	1.9	54
38	Protein Kinase C Isoforms Differentially Phosphorylate Ca _v 1.2 $\hat{l}\pm$ _{1c} . Biochemistry, 2009, 48, 6674-6683.	2.5	53
39	Rapamycin Regulates Endothelial Cell Migration through Regulation of the Cyclin-dependent Kinase Inhibitor p27Kip1. Journal of Biological Chemistry, 2010, 285, 11991-11997.	3.4	52
40	\hat{l}^2 -Adrenergic Regulation of the L-type Ca <code>²⁺</code> Channel Does Not Require Phosphorylation of \hat{l}^2 <code>_{1C}</code> Ser <code>¹⁷⁰⁰</code> . Circulation Research, 2013, 113, 871-880.	4.5	52
41	Molecular Mechanisms, and Selective Pharmacological Rescue, of Rem-Inhibited Ca $<$ sub $>$ V $<$ /sub $>$ 1.2 Channels in Heart. Circulation Research, 2010, 107, 620-630.	4.5	50
42	Calmodulin limits pathogenic Na+ channel persistent current. Journal of General Physiology, 2017, 149, 277-293.	1.9	50
43	Cardiac CaV1.2 channels require β subunits for β-adrenergic–mediated modulation but not trafficking. Journal of Clinical Investigation, 2019, 129, 647-658.	8.2	49
44	Position and Role of the BK Channel $\hat{l}\pm$ Subunit SO Helix Inferred from Disulfide Crosslinking. Journal of General Physiology, 2008, 131, 537-548.	1.9	46
45	Immunophilins and Coupled Gating of Ryanodine Receptors. Current Topics in Medicinal Chemistry, 2003, 3, 1383-1391.	2.1	44
46	Location of the Â4 Transmembrane Helices in the BK Potassium Channel. Journal of Neuroscience, 2009, 29, 8321-8328.	3.6	42
47	Reprogramming of the MicroRNA Transcriptome Mediates Resistance to Rapamycin. Journal of Biological Chemistry, 2013, 288, 6034-6044.	3.4	41
48	Proteolytic cleavage and PKA phosphorylation of $\hat{l}\pm$ (sub>1C(/sub> subunit are not required for adrenergic regulation of Ca (sub) V(/sub) 1.2 in the heart. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 9194-9199.	7.1	40
49	Adrenergic Ca $<$ sub $>$ V $<$ /sub $>$ 1.2 Activation via Rad Phosphorylation Converges at $\hat{l}\pm<$ sub $>$ 1C $<$ /sub $>$ 1-II Loop. Circulation Research, 2021, 128, 76-88.	4.5	39
50	Direct interaction between BKCa potassium channel and microtubule-associated protein 1A. FEBS Letters, 2004, 570, 143-148.	2.8	34
51	Characterization of KCNQ1 atrial fibrillation mutations reveals distinct dependence on KCNE1. Journal of General Physiology, 2012, 139, 135-144.	1.9	34
52	Treatment of experimental asthma using a single small molecule with antiâ€inflammatory and BK channelâ€activating properties. FASEB Journal, 2013, 27, 4975-4986.	0.5	31
53	Cell Cycle Progression and Proliferation Despite 4BP-1 Dephosphorylation. Molecular and Cellular Biology, 1999, 19, 6041-6047.	2.3	30
54	Adrenergic Regulation of Calcium Channels in the Heart. Annual Review of Physiology, 2022, 84, 285-306.	13.1	29

#	Article	IF	CITATIONS
55	FKBP12 Modulates Gating of the Ryanodine Receptor/Calcium Release Channela. Annals of the New York Academy of Sciences, 1998, 853, 149-156.	3.8	27
56	Regulation of the ryanodine receptor in heart failure. Basic Research in Cardiology, 2002, 97, 1-1.	5.9	26
57	Progression of heart failure: is protein kinase a hyperphosphorylation of the ryanodine receptor a contributing factor?. Circulation, 2002, 105, 272-5.	1.6	25
58	Ion channel macromolecular complexes in the heart. Journal of Molecular and Cellular Cardiology, 2003, 35, 37-44.	1.9	23
59	Positions of \hat{l}^22 and \hat{l}^23 subunits in the large-conductance calcium- and voltage-activated BK potassium channel. Journal of General Physiology, 2013, 141, 105-117.	1.9	22
60	1-Year Clinical Outcomes of All-Comer Patients Treated With the Dual-Therapy COMBO Stent. JACC: Cardiovascular Interventions, 2018, 11, 1969-1978.	2.9	21
61	Reduced vascular smooth muscle BK channel current underlies heart failureâ€induced vasoconstriction in mice. FASEB Journal, 2013, 27, 1859-1867.	0.5	20
62	An interaction between the III-IV linker and CTD in NaV1.5 confers regulation of inactivation by CaM and FHF. Journal of General Physiology, 2020, 152 , .	1.9	20
63	Heterogeneity of the action potential duration is required for sustained atrial fibrillation. JCI Insight, 2019, 4, .	5.0	17
64	Attenuating persistent sodium current–induced atrial myopathy and fibrillation by preventing mitochondrial oxidative stress. JCI Insight, 2021, 6, .	5.0	17
65	Fibroblast growth factor homologous factors tune arrhythmogenic late NaV1.5 current in calmodulin binding–deficient channels. JCI Insight, 2020, 5, .	5.0	16
66	Detecting Cardiovascular Protein-Protein Interactions by Proximity Proteomics. Circulation Research, 2022, 130, 273-287.	4.5	11
67	The quest to identify the mechanism underlying adrenergic regulation of cardiac Ca2+ channels. Channels, 2020, 14, 123-131.	2.8	10
68	Increased Ca2+ influx through CaV1.2 drives aortic valve calcification. JCI Insight, 2022, 7, .	5.0	10
69	The PDZ Motif of the $\hat{l}\pm 1C$ Subunit Is Not Required for Surface Trafficking and Adrenergic Modulation of CaV1.2 Channel in the Heart. Journal of Biological Chemistry, 2015, 290, 2166-2174.	3.4	9
70	Positions of the cytoplasmic end of BK α SO helix relative to S1–S6 and of β1 TM1 and TM2 relative to S0–S6. Journal of General Physiology, 2015, 145, 185-199.	1.9	8
71	Roles and Regulation of Voltage-gated Calcium Channels in Arrhythmias. Journal of Innovations in Cardiac Rhythm Management, 2019, 10, 3874-3880.	0.5	8
72	Fibroblast growth factor homologous factors serve as a molecular rheostat in tuning arrhythmogenic cardiac late sodium current., 2022, 1, 1-13.		8

#	Article	IF	CITATIONS
73	lon Channels, Transporters, and Pumps as Targets for Heart Failure Therapy. Journal of Cardiovascular Pharmacology, 2009, 54, 273-278.	1.9	7
74	Orientations and Proximities of the Extracellular Ends of Transmembrane Helices SO and S4 in Open and Closed BK Potassium Channels. PLoS ONE, 2013, 8, e58335.	2.5	7
75	Novel approaches to examine the regulation of voltage-gated calcium channels in the heart. Current Molecular Pharmacology, 2015, 8, 61-68.	1.5	6
76	Secretoneurin to the Rescue?. Circulation: Arrhythmia and Electrophysiology, 2019, 12, e007298.	4.8	3
77	Use of Proximity Labeling in Cardiovascular Research. JACC Basic To Translational Science, 2021, 6, 598-609.	4.1	2
78	Probing ion channel neighborhoods using proximity proteomics. Methods in Enzymology, 2021, 654, 115-136.	1.0	2
79	The Locations of the Beta4 Transmembrane Helices in the BK Channel. Biophysical Journal, 2009, 96, 475a.	0.5	O
80	Removing the Stress From Hypertension-Induced Atrial Fibrillation. JACC Basic To Translational Science, 2020, 5, 616-618.	4.1	0
81	Vasculature remodeling by pressure, caveolae, calcium, and kinases. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2204968119.	7.1	O