
Rong Hai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2671168/publications.pdf Version: 2024-02-01

PONC HAL

#	Article	IF	CITATIONS
1	Chimeric Hemagglutinin Influenza Virus Vaccine Constructs Elicit Broadly Protective Stalk-Specific Antibodies. Journal of Virology, 2013, 87, 6542-6550.	3.4	360
2	Broadly Protective Monoclonal Antibodies against H3 Influenza Viruses following Sequential Immunization with Different Hemagglutinins. PLoS Pathogens, 2010, 6, e1000796.	4.7	251
3	Hemagglutinin stalk antibodies elicited by the 2009 pandemic influenza virus as a mechanism for the extinction of seasonal H1N1 viruses. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 2573-2578.	7.1	244
4	Influenza Viruses Expressing Chimeric Hemagglutinins: Globular Head and Stalk Domains Derived from Different Subtypes. Journal of Virology, 2012, 86, 5774-5781.	3.4	241
5	Genome-wide mutagenesis of influenza virus reveals unique plasticity of the hemagglutinin and NS1 proteins. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20248-20253.	7.1	159
6	Influenza A(H7N9) virus gains neuraminidase inhibitor resistance without loss of in vivo virulence or transmissibility. Nature Communications, 2013, 4, 2854.	12.8	146
7	Induction of Broadly Reactive Anti-Hemagglutinin Stalk Antibodies by an H5N1 Vaccine in Humans. Journal of Virology, 2014, 88, 13260-13268.	3.4	136
8	<i>In Vivo</i> Bioluminescent Imaging of Influenza A Virus Infection and Characterization of Novel Cross-Protective Monoclonal Antibodies. Journal of Virology, 2013, 87, 8272-8281.	3.4	133
9	Assessment of Influenza Virus Hemagglutinin Stalk-Based Immunity in Ferrets. Journal of Virology, 2014, 88, 3432-3442.	3.4	128
10	Targeting Viral Proteostasis Limits Influenza Virus, HIV, and Dengue Virus Infection. Immunity, 2016, 44, 46-58.	14.3	110
11	Immunogenicity of chimeric haemagglutinin-based, universal influenza virus vaccine candidates: interim results of a randomised, placebo-controlled, phase 1 clinical trial. Lancet Infectious Diseases, The, 2020, 20, 80-91.	9.1	103
12	Influenza B Virus NS1-Truncated Mutants: Live-Attenuated Vaccine Approach. Journal of Virology, 2008, 82, 10580-10590.	3.4	102
13	H3 Stalk-Based Chimeric Hemagglutinin Influenza Virus Constructs Protect Mice from H7N9 Challenge. Journal of Virology, 2014, 88, 2340-2343.	3.4	102
14	Zika virus genome biology and molecular pathogenesis. Emerging Microbes and Infections, 2017, 6, 1-6.	6.5	99
15	Hemagglutinin Stalk-Reactive Antibodies Are Boosted following Sequential Infection with Seasonal and Pandemic H1N1 Influenza Virus in Mice. Journal of Virology, 2012, 86, 10302-10307.	3.4	93
16	Human antibodies targeting Zika virus NS1 provide protection against disease in a mouse model. Nature Communications, 2018, 9, 4560.	12.8	88
17	The structure of Zika virus NS5 reveals a conserved domain conformation. Nature Communications, 2017, 8, 14763.	12.8	76
18	Chimeric Hemagglutinin Constructs Induce Broad Protection against Influenza B Virus Challenge in the Mouse Model. Journal of Virology, 2017, 91, .	3.4	70

Rong Hai

#	Article	IF	CITATIONS
19	Hemagglutinin Stalk Immunity Reduces Influenza Virus Replication and Transmission in Ferrets. Journal of Virology, 2016, 90, 3268-3273.	3.4	69
20	H7N9 influenza viruses interact preferentially with α2,3-linked sialic acids and bind weakly to α2,6-linked sialic acids. Journal of General Virology, 2013, 94, 2417-2423.	2.9	65
21	One-shot vaccination with an insect cell-derived low-dose influenza A H7 virus-like particle preparation protects mice against H7N9 challenge. Vaccine, 2014, 32, 355-362.	3.8	59
22	Structure and function of Zika virus NS5 protein: perspectives for drug design. Cellular and Molecular Life Sciences, 2018, 75, 1723-1736.	5.4	59
23	The Nucleoprotein of Newly Emerged H7N9 Influenza A Virus Harbors a Unique Motif Conferring Resistance to Antiviral Human MxA. Journal of Virology, 2015, 89, 2241-2252.	3.4	56
24	Divergent H7 Immunogens Offer Protection from H7N9 Virus Challenge. Journal of Virology, 2014, 88, 3976-3985.	3.4	52
25	Two conserved oligomer interfaces of NSP7 and NSP8 underpin the dynamic assembly of SARS-CoV-2 RdRP. Nucleic Acids Research, 2021, 49, 5956-5966.	14.5	43
26	Influenza A Viruses Expressing Intra- or Intergroup Chimeric Hemagglutinins. Journal of Virology, 2016, 90, 3789-3793.	3.4	42
27	Structural basis for STAT2 suppression by flavivirus NS5. Nature Structural and Molecular Biology, 2020, 27, 875-885.	8.2	40
28	Suppression of Type I Interferon Signaling by Flavivirus NS5. Viruses, 2018, 10, 712.	3.3	39
29	Modulation of an Ectodomain Motif in the Influenza A Virus Neuraminidase Alters Tetherin Sensitivity and Results in Virus Attenuation In Vivo. Journal of Molecular Biology, 2014, 426, 1308-1321.	4.2	19
30	Devil's tools: SARS-CoV-2 antagonists against innate immunity. Current Research in Virological Science, 2021, 2, 100013.	3.5	19
31	Noncoding RNAs Serve as the Deadliest Universal Regulators of all Cancers. Cancer Genomics and Proteomics, 2021, 18, 43-52.	2.0	11
32	H1 Hemagglutinin Priming Provides Long-Lasting Heterosubtypic Immunity against H5N1 Challenge in the Mouse Model. MBio, 2020, 11, .	4.1	11
33	FINET: Fast Inferring NETwork. BMC Research Notes, 2020, 13, 521.	1.4	9
34	Effects of Cigarette Smoking on Influenza Virus/Host Interplay. Pathogens, 2021, 10, 1636.	2.8	9
35	Influenza A virus utilizes noncanonical cap-snatching to diversify its mRNA/ncRNA. Rna, 2020, 26, 1170-1183.	3.5	8
36	Adaptive Evolution of Sphingobium hydrophobicum C1T in Electronic Waste Contaminated River Sediment. Frontiers in Microbiology, 2019, 10, 2263.	3.5	7

#	Article	IF	CITATIONS
37	Noncoding RNAs and Deep Learning Neural Network Discriminate Multi-Cancer Types. Cancers, 2022, 14, 352.	3.7	5
38	Protein profiling and pseudo-parallel reaction monitoring to monitor a fusion-associated conformational change in hemagglutinin. Analytical and Bioanalytical Chemistry, 2019, 411, 4987-4998.	3.7	3

4