Yongsung Hwang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/267110/publications.pdf

Version: 2024-02-01

21 papers 1,005 citations

567281 15 h-index 713466 21 g-index

22 all docs 22 docs citations

times ranked

22

1854 citing authors

#	Article	IF	CITATIONS
1	A Novel Strategy for Creating an Antibacterial Surface Using a Highly Efficient Electrospray-Based Method for Silica Deposition. International Journal of Molecular Sciences, 2022, 23, 513.	4.1	8
2	Ameliorating Fibrotic Phenotypes of Keloid Dermal Fibroblasts through an Epidermal Growth Factor-Mediated Extracellular Matrix Remodeling. International Journal of Molecular Sciences, 2021, 22, 2198.	4.1	4
3	Heparin-Mimicking Polymer-Based In Vitro Platform Recapitulates In Vivo Muscle Atrophy Phenotypes. International Journal of Molecular Sciences, 2021, 22, 2488.	4.1	5
4	Hyaluronic Acid Treatment Improves Healing of the Tenorrhaphy Site by Suppressing Adhesions through Extracellular Matrix Remodeling in a Rat Model. Polymers, 2021, 13, 928.	4. 5	6
5	Effects on Wound Healing of Human-Induced Pluripotent Stem Cell-Derived Cells Similar to Endothelial Colony-Forming Cells. Journal of Wound Management and Research, 2020, 16, 3-12.	0.3	3
6	Traction Force Microscopy for Understanding Cellular Mechanotransduction. BMB Reports, 2020, 53, 74-081.	2.4	39
7	MBP-FGF2-Immobilized Matrix Maintains Self-Renewal and Myogenic Differentiation Potential of Skeletal Muscle Stem Cells. International Journal of Stem Cells, 2019, 12, 360-366.	1.8	3
8	Matrix Topographical Cue-Mediated Myogenic Differentiation of Human Embryonic Stem Cell Derivatives. Polymers, 2017, 9, 580.	4. 5	18
9	In vivo comparison of biomineralized scaffold-directed osteogenic differentiation of human embryonic and mesenchymal stem cells. Drug Delivery and Translational Research, 2016, 6, 121-131.	5.8	18
10	The matrix protein Fibulin-5 is at the interface of tissue stiffness and inflammation in fibrosis. Nature Communications, 2015, 6, 8574.	12.8	64
11	Biomimetic Material-Assisted Delivery of Human Embryonic Stem Cell Derivatives for Enhanced In Vivo Survival and Engraftment. ACS Biomaterials Science and Engineering, 2015, 1, 7-12.	5.2	16
12	Mineralized gelatin methacrylate-based matrices induce osteogenic differentiation of human induced pluripotent stem cells. Acta Biomaterialia, 2014, 10, 4961-4970.	8.3	89
13	Biomineralized matrix-assisted osteogenic differentiation of human embryonic stem cells. Journal of Materials Chemistry B, 2014, 2, 5676.	5 . 8	28
14	WNT3A promotes myogenesis of human embryonic stem cells and enhances in vivo engraftment. Scientific Reports, 2014, 4, 5916.	3. 3	34
15	Engineering cell–material interfaces for long-term expansion of human pluripotent stem cells. Biomaterials, 2013, 34, 912-921.	11.4	47
16	Directed In Vitro Myogenesis of Human Embryonic Stem Cells and Their In Vivo Engraftment. PLoS ONE, 2013, 8, e72023.	2. 5	37
17	Effect of scaffold microarchitecture on osteogenic differentiation of human mesenchymal stem cells. , 2013, 25, 114-129.		76
18	Engineered microenvironments for self-renewal and musculoskeletal differentiation of stem cells. Regenerative Medicine, 2011, 6, 505-524.	1.7	31

Yongsung Hwang

#	Article	IF	CITATIONS
19	Engineering the cell–material interface for controlling stem cell adhesion, migration, and differentiation. Biomaterials, 2011, 32, 3700-3711.	11.4	288
20	Interconnected Macroporous Poly(Ethylene Glycol) Cryogels as a Cell Scaffold for Cartilage Tissue Engineering. Tissue Engineering - Part A, 2010, 16, 3033-3041.	3.1	78
21	Poly(ethylene glycol) cryogels as potential cell scaffolds: effect of polymerization conditions on cryogel microstructure and properties. Journal of Materials Chemistry, 2010, 20, 345-351.	6.7	93