List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2670943/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Holocene land-cover reconstructions for studies on land cover-climate feedbacks. Climate of the Past, 2010, 6, 483-499.	3.4	214
2	Replacing coniferous monocultures with mixed-species production stands: An assessment of the potential benefits for forest biodiversity in northern Europe. Forest Ecology and Management, 2010, 260, 939-947.	3.2	211
3	Pollenâ€based quantitative reconstructions of Holocene regional vegetation cover (plantâ€functional) Tj ETQq1 1 676-697.	0.78431 9.5	4 rgBT /Ov∈ 161
4	REGIONAL SPREAD AND STAND-SCALE ESTABLISHMENT OF FAGUS SYLVATICA AND PICEA ABIES IN SCANDINAVIA. Ecology, 2005, 86, 1679-1686.	3.2	133
5	How climate change adaptation and mitigation strategies can threaten or enhance the biodiversity of production forests: Insights from Sweden. Biological Conservation, 2016, 194, 11-20.	4.1	96
6	Pattern and process in south Swedish forests during the last 3000 years, sensed at stand and regional scales. Journal of Ecology, 2000, 88, 113-128.	4.0	94
7	Understory succession in post-agricultural oak forests: Habitat fragmentation affects forest specialists and generalists differently. Forest Ecology and Management, 2011, 262, 1863-1871.	3.2	78
8	The origin of present forest composition and pattern in southern Sweden. Journal of Biogeography, 1998, 25, 463-477.	3.0	72
9	From broadleaves to spruce – the borealization of southern Sweden. Scandinavian Journal of Forest Research, 2014, 29, 686-696.	1.4	71
10	Increased openness around retained oaks increases species richness of saproxylic beetles. Biodiversity and Conservation, 2012, 21, 3035-3059.	2.6	69
11	Long-time record of fire and open canopy in a high biodiversity forest in southeast Sweden. Biological Conservation, 2003, 114, 231-243.	4.1	67
12	Forest History as a Basis for Ecosystem Restoration?A Multidisciplinary Case Study in a South Swedish Temperate Landscape. Restoration Ecology, 2007, 15, 284-295.	2.9	66
13	Keeping pace with forestry: Multi-scale conservation in a changing production forest matrix. Ambio, 2020, 49, 1050-1064.	5.5	64
14	Are pollen records from small sites appropriate for REVEALS model-based quantitative reconstructions of past regional vegetation? An empirical test in southern Sweden. Vegetation History and Archaeobotany, 2016, 25, 131-151.	2.1	62
15	Morphometric analysis of pollen grains for paleoecological studies: classification of <i>Picea</i> from eastern North America. American Journal of Botany, 2002, 89, 1459-1467.	1.7	54
16	The development and demise of a Medieval forest-meadow system at Linnaeus' birthplace in southern Sweden: implications for conservation and forest history. Vegetation History and Archaeobotany, 1995, 4, 153.	2.1	52
17	Past forest composition, structures and processes – How paleoecology can contribute to forest conservation. Biological Conservation, 2013, 168, 116-127.	4.1	52
18	A comparison of saproxylic beetle occurrence between man-made high- and low-stumps of spruce (Picea abies). Forest Ecology and Management, 2006, 226, 230-237.	3.2	50

#	Article	IF	CITATIONS
19	A longâ€ŧerm record of Quercus decline, logging and fires in a southern Swedish Fagus ―Picea forest. Journal of Vegetation Science, 2002, 13, 765-774.	2.2	46
20	Dynamics of longâ€lived foundation species: the history of <i>Quercus</i> in southern Scandinavia. Journal of Ecology, 2010, 98, 1330-1345.	4.0	46
21	The tree species matters: Biodiversity and ecosystem service implications of replacing Scots pine production stands with Norway spruce. Ambio, 2020, 49, 1035-1049.	5.5	44
22	A long-term record of Quercus decline, logging and fires in a southern Swedish Fagus-Picea forest. Journal of Vegetation Science, 2002, 13, 765.	2.2	44
23	Forest decision support systems for the analysis of ecosystem services provisioning at the landscape scale under global climate and market change scenarios. European Journal of Forest Research, 2019, 138, 561-581.	2.5	43
24	Close anthropogenic control of Fagus sylvatica establishment and expansion in a Swedish protected landscape – implications for forest history and conservation. Journal of Biogeography, 2008, 35, 682-697.	3.0	40
25	The influence of former land-use on vegetation and biodiversity in the boreo-nemoral zone of Sweden. Ecography, 1999, 22, 485-498.	4.5	39
26	The postglacial history of three Picea species in New England, USA. Quaternary Research, 2003, 59, 61-69.	1.7	36
27	Half a century of multiple anthropogenic stressors has altered northern forest understory plant communities. Ecological Applications, 2019, 29, e01874.	3.8	36
28	Forest Biodiversity, Carbon Sequestration, and Wood Production: Modeling Synergies and Trade-Offs for Ten Forest Landscapes Across Europe. Frontiers in Ecology and Evolution, 2020, 8, .	2.2	36
29	The role of fire in southern Scandinavian forests during the late Holocene. International Journal of Wildland Fire, 2010, 19, 1040.	2.4	36
30	Tree species impact on understory vegetation: Vascular plant communities of Scots pine and Norway spruce managed stands in northern Europe. Forest Ecology and Management, 2019, 448, 330-345.	3.2	33
31	Linking forest management, policy and biodiversity indicators – A comparison of Lithuania and Southern Sweden. Forest Ecology and Management, 2013, 291, 181-189.	3.2	30
32	Reconstruction of past landscape openness using the Landscape Reconstruction Algorithm (LRA) applied on three local pollen sites in a southern Swedish biodiversity hotspot. Vegetation History and Archaeobotany, 2015, 24, 253-266.	2.1	29
33	Avian diversity in Norway spruce production forests – How variation in structure and composition reveals pathways for improving habitat quality. Forest Ecology and Management, 2017, 397, 48-56.	3.2	29
34	Concealed by darkness: How stand density can override the biodiversity benefits of mixed forests. Ecosphere, 2019, 10, e02835.	2.2	25
35	From wooded pasture to timber production – Changes in a European beech (Fagus sylvatica) forest landscape between 1840 and 2010. Scandinavian Journal of Forest Research, 2012, 27, 245-254.	1.4	23
36	The biodiversity contribution of wood plantations: Contrasting the bird communities of Sweden's protected and production oak forests. Forest Ecology and Management, 2016, 365, 51-60.	3.2	22

#	Article	IF	CITATIONS
37	Saproxylic beetles in artificially created high-stumps of spruce and birch within and outside hotspot areas. Biodiversity and Conservation, 2007, 16, 3213-3226.	2.6	20
38	Saproxylic beetle assemblages in artificially created highâ€stumps of spruce (<i>Picea abies</i>) and birch (<i>Betula pendula/pubescens</i>) – does the surrounding landscape matter?. Insect Conservation and Diversity, 2009, 2, 284-294.	3.0	20
39	Natural Versus National Boundaries: the Importance of Considering Biogeographical Patterns in Forest Conservation Policy. Conservation Letters, 2015, 8, 50-57.	5.7	20
40	A comparison of avian diversity in spruce monocultures and spruce-birch polycultures in southern Sweden. Silva Fennica, 2011, 45, .	1.3	20
41	A late-glacial transition from Picea glauca to Picea mariana in southern New England. Quaternary Research, 2007, 67, 502-508.	1.7	19
42	Farm establishment, abandonment and agricultural practices during the last 1,300Âyears: a case study from southern Sweden based on pollen records and the LOVE model. Vegetation History and Archaeobotany, 2019, 28, 529-544.	2.1	19
43	How long has the â€~hotspot' been â€~hot'? Past stand-scale structures at Siggaboda nature reserve in southern Sweden. Biodiversity and Conservation, 2010, 19, 2167-2187.	2.6	17
44	Influence of butt rot on beetle diversity in artificially created high-stumps of Norway spruce. Forest Ecology and Management, 2008, 255, 3396-3403.	3.2	15
45	From mixtures to monocultures: Bird assemblage responses along a production forest conifer-broadleaf gradient. Forest Ecology and Management, 2021, 494, 119299.	3.2	14
46	Subregional variability in the response of New England vegetation to postglacial climate change. Journal of Biogeography, 2018, 45, 2375-2388.	3.0	13
47	Increasing influence of the surrounding landscape on saproxylic beetle communities over 10†years succession in dead wood. Forest Ecology and Management, 2019, 440, 267-284.	3.2	13
48	Forest biodiversity and ecosystem services from spruce-birch mixtures: The potential importance of tree spatial arrangement. Environmental Challenges, 2022, 6, 100407.	4.2	12
49	Forest floor bryophyte and lichen diversity in Scots pine and Norway spruce production forests. Forest Ecology and Management, 2021, 493, 119210.	3.2	10
50	Beetle diversity in high-stumps from Norway spruce thinnings. Scandinavian Journal of Forest Research, 2008, 23, 339-347.	1.4	8
51	A landscape and policy perspective on forest conversion: Long-tailed tit (Aegithalos caudatus) and the allocation of deciduous forests in southern Sweden. European Journal of Forest Research, 2011, 130, 861-869.	2.5	8
52	The lateâ€Holocene decline of <i>Tilia</i> in relation to climate and human activities – pollen evidence from 42 sites in southern Sweden. Journal of Biogeography, 2017, 44, 2398-2409.	3.0	8
53	Consequences for bird diversity from a decrease in a foundation species—replacing Scots pine stands with Norway spruce in southern Sweden. Regional Environmental Change, 2019, 19, 1429-1440.	2.9	8
54	Halland's forests during the last 300 years: a review of Malmström (1939). Scandinavian Journal of Forest Research, 2011, 26, 81-90.	1.4	7

#	Article	IF	CITATIONS
55	Oaks retained in production spruce forests help maintain saproxylic beetle diversity in southern Scandinavian landscapes. Forest Ecology and Management, 2018, 417, 257-264.	3.2	7
56	Thinning around old oaks in spruce production forests: current practices show no positive effect on oak growth rates and need fine tuning. Scandinavian Journal of Forest Research, 2019, 34, 126-132.	1.4	7
57	How generalist are these forest specialists? What Sweden's avian indicators indicate. Animal Conservation, 2020, 23, 762-773.	2.9	5
58	Did forest fires maintain mixed oak forests in southern Scandinavia? A dendrochronological speculation. Forest Ecology and Management, 2021, 482, 118853.	3.2	5
59	Short-rotation bioenergy stands as an alternative to spruce plantations: implications for bird biodiversity. Silva Fennica, 2014, 48, .	1.3	5
60	Broadleaf retention benefits to bird diversity in mid-rotation conifer production stands. Forest Ecology and Management, 2022, 515, 120223.	3.2	2