
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2670724/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pleiotropic prodrugs: Design of a dual butyrylcholinesterase inhibitor and 5-HT6 receptor antagonist with therapeutic interest in Alzheimer's disease. European Journal of Medicinal Chemistry, 2021, 210, 113059.	2.6	20
2	Novel and atypical pathways for serotonin signaling. Faculty Reviews, 2021, 10, 52.	1.7	14
3	International Union of Basic and Clinical Pharmacology. CX. Classification of Receptors for 5-hydroxytryptamine; Pharmacology and Function. Pharmacological Reviews, 2021, 73, 310-520.	7.1	127
4	Donecopride, a Swiss army knife with potential against Alzheimer's disease. British Journal of Pharmacology, 2020, 177, 1988-2005.	2.7	19
5	Therapeutic modulators of the serotonin 5-HT4 receptor: a patent review (2014-present). Expert Opinion on Therapeutic Patents, 2020, 30, 495-508.	2.4	12
6	Editorial: Identification of Multiple Targets in the Fight Against Alzheimer's Disease. Frontiers in Aging Neuroscience, 2020, 12, 169.	1.7	3
7	Peripheral Routes to Neurodegeneration: Passing Through the Blood–Brain Barrier. Frontiers in Aging Neuroscience, 2020, 12, 3.	1.7	18
8	Rational design of novel benzisoxazole derivatives with acetylcholinesterase inhibitory and serotoninergic 5-HT4 receptors activities for the treatment of Alzheimer's disease. Scientific Reports, 2020, 10, 3014.	1.6	23
9	Classification and signaling characteristics of 5-HT receptors: toward the concept of 5-HT receptosomes. Handbook of Behavioral Neuroscience, 2020, , 91-120.	0.7	12
10	The 5×FAD mouse model of Alzheimer's disease. , 2020, , 207-221.		3
11	Novel multi target-directed ligands targeting 5-HT4 receptors with in cellulo antioxidant properties as promising leads in Alzheimer's disease. European Journal of Medicinal Chemistry, 2019, 182, 111596.	2.6	12
12	Inhibiting Acetylcholinesterase to Activate Pleiotropic Prodrugs with Therapeutic Interest in Alzheimer's Disease. Molecules, 2019, 24, 2786.	1.7	20
13	A Novel in vivo Anti-amnesic Agent, Specially Designed to Express Both Acetylcholinesterase (AChE) Inhibitory, Serotonergic Subtype 4 Receptor (5-HT4R) Agonist and Serotonergic Subtype 6 Receptor (5-HT6R) Inverse Agonist Activities, With a Potential Interest Against Alzheimer's Disease. Frontiers in Aging Neuroscience, 2019, 11, 148.	1.7	20
14	Chronic treatments with a 5-HT 4 receptor agonist decrease amyloid pathology in the entorhinal cortex and learning and memory deficits in the 5xFAD mouse model of Alzheimer's disease. Neuropharmacology, 2017, 126, 128-141.	2.0	41
15	Phosphorylation of β-arrestin2 at Thr383 by MEK underlies β-arrestin-dependent activation of Erk1/2 by GPCRs. ELife, 2017, 6, .	2.8	53
16	Longitudinal In Vivo Imaging of the Cerebrovasculature: Relevance to CNS Diseases. Journal of Visualized Experiments, 2016, , .	0.2	6
17	Cerebrovascular pathology during the progression of experimental Alzheimer's disease. Neurobiology of Disease, 2016, 88, 107-117.	2.1	107
18	Serotonin: A New Hope in Alzheimer's Disease?. ACS Chemical Neuroscience, 2015, 6, 940-943.	1.7	107

#	Article	IF	CITATIONS
19	Novel Multitarget-Directed Ligands (MTDLs) with Acetylcholinesterase (AChE) Inhibitory and Serotonergic Subtype 4 Receptor (5-HT ₄ R) Agonist Activities As Potential Agents against Alzheimer's Disease: The Design of Donecopride. Journal of Medicinal Chemistry, 2015, 58, 3172-3187.	2.9	100
20	SAP97-mediated ADAM10 trafficking from Golgi outposts depends on PKC phosphorylation. Cell Death and Disease, 2014, 5, e1547-e1547.	2.7	56
21	Primary Culture of Mouse Dopaminergic Neurons. Journal of Visualized Experiments, 2014, , e51751.	0.2	37
22	Design of donecopride, a dual serotonin subtype 4 receptor agonist/acetylcholinesterase inhibitor with potential interest for Alzheimer's disease treatment. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E3825-30.	3.3	96
23	P4-206: A NOVEL MTDL APPROACH TO ALZHEIMER DISEASE: 5-HT4 RECEPTOR AGONISTS WITH ACETYLCHOLINESTERASE INHIBITORY ACTIVITIES. , 2014, 10, P863-P864.		0
24	O2-04-03: MEMORY DEFICITS OF 5XFAD MICE IN THE OLFACTORY H-MAZE TEST CORRELATE WITH PLAQUES DEVELOPMENT AND ARE PREVENTED BY 5-HT4R AGONIST TREATMENTS. , 2014, 10, P170-P171.		0
25	Serotonin Type 4 Receptor Dimers. Methods in Cell Biology, 2013, 117, 123-139.	0.5	2
26	5-HT ₄ Receptors Constitutively Promote the Non-Amyloidogenic Pathway of APP Cleavage and Interact with ADAM10. ACS Chemical Neuroscience, 2013, 4, 130-140.	1.7	72
27	Pharmacological profile of engineered 5-HT4 receptors and identification of 5-HT4 receptor-biased ligands. Brain Research, 2013, 1511, 65-72.	1.1	7
28	Early administration of RS 67333, a specific 5-HT4 receptor agonist, prevents amyloidogenesis and behavioral deficits in the 5XFAD mouse model of Alzheimer's disease. Frontiers in Aging Neuroscience, 2013, 5, 96.	1.7	71
29	Alzheimer culprits: Cellular crossroads and interplay. Cellular Signalling, 2012, 24, 1831-1840.	1.7	76
30	5-HT4 receptors, a place in the sun: act two. Current Opinion in Pharmacology, 2011, 11, 87-93.	1.7	61
31	G Protein Activation by Serotonin Type 4 Receptor Dimers. Journal of Biological Chemistry, 2011, 286, 9985-9997.	1.6	69
32	Benzimidazole Derivatives as New Serotonin 5-HT ₆ Receptor Antagonists. Molecular Mechanisms of Receptor Inactivation. Journal of Medicinal Chemistry, 2010, 53, 1357-1369.	2.9	61
33	Classification and Signaling Characteristics of 5-HT Receptors. Handbook of Behavioral Neuroscience, 2010, 21, 103-121.	0.7	13
34	Conformational Toggle Switches Implicated in Basal Constitutive and Agonist-Induced Activated States of 5-Hydroxytryptamine-4 Receptors. Molecular Pharmacology, 2009, 75, 982-990.	1.0	52
35	β-arrestin1 phosphorylation by GRK5 regulates G protein-independent 5-HT4 receptor signalling. EMBO Journal, 2009, 28, 2706-2718.	3.5	62
36	Engineering GPCR signaling pathways with RASSLs. Nature Methods, 2008, 5, 673-678.	9.0	223

#	Article	IF	CITATIONS
37	5-HT4 receptors: History, molecular pharmacology and brain functions. Neuropharmacology, 2008, 55, 922-931.	2.0	101
38	5-Hydroxytryptamine4 Receptor Activation of the Extracellular Signal-regulated Kinase Pathway Depends on Src Activation but Not on G Protein or β-Arrestin Signaling. Molecular Biology of the Cell, 2007, 18, 1979-1991.	0.9	68
39	Modifying Ligand-Induced and Constitutive Signaling of the Human 5-HT4 Receptor. PLoS ONE, 2007, 2, e1317.	1.1	42
40	Neuronal 5-HT metabotropic receptors: fine-tuning of their structure, signaling, and roles in synaptic modulation. Cell and Tissue Research, 2006, 326, 553-572.	1.5	228
41	Uncoupling and Endocytosis of 5-Hydroxytryptamine 4 Receptors. Journal of Biological Chemistry, 2005, 280, 27924-27934.	1.6	44
42	An Activation Switch in the Rhodopsin Family of G Protein-coupled Receptors. Journal of Biological Chemistry, 2005, 280, 17135-17141.	1.6	106
43	Drosophilamolting neurohormone bursicon is a heterodimer and the natural agonist of the orphan receptor DLGR2. FEBS Letters, 2005, 579, 2171-2176.	1.3	144
44	5-HT4 Receptors. CNS and Neurological Disorders, 2004, 3, 39-51.	4.3	166
45	New sorting nexin (SNX27) and NHERF specifically interact with the 5-HT4(a) receptor splice variant: roles in receptor targeting. Journal of Cell Science, 2004, 117, 5367-5379.	1.2	145
46	A Single Mutation in the 5-HT4 Receptor (5-HT4-R D100(3.32)A) Generates a Gs-coupled Receptor Activated Exclusively by Synthetic Ligands (RASSL). Journal of Biological Chemistry, 2003, 278, 699-702.	1.6	57
47	Glycoprotein Hormone Receptors: A Unique Paradigm for Ligand Binding and GPCR Activation. , 2003, , 161-166.		0
48	A 5-HT4 Receptor Transmembrane Network Implicated in the Activity of Inverse Agonists but Not Agonists. Journal of Biological Chemistry, 2002, 277, 25502-25511.	1.6	35
49	A conserved Asn in TM7 of the thyrotropin receptor is a common requirement for activation by both mutations and its natural agonist. FEBS Letters, 2002, 517, 195-200.	1.3	34
50	G Protein-Coupled Receptors: Dominant Players in Cell–Cell Communication. International Review of Cytology, 2002, 212, 63-136e.	6.2	64
51	Constitutively active mutants of 5â€HT 4 receptors are they in unique active states?. EMBO Reports, 2001, 2, 61-67.	2.0	27
52	Pharmacological Properties of 5-Hydroxytryptamine ₄ Receptor Antagonists on Constitutively Active Wild-Type and Mutated Receptors. Molecular Pharmacology, 2000, 58, 136-144.	1.0	51
53	Inhibition of glucose-induced insulin secretion by a peripheral-type benzodiazepine receptor ligand (PKÂ11195). Naunyn-Schmiedeberg's Archives of Pharmacology, 2000, 362, 46-51.	1.4	4
54	5-HT4 Receptors: Gene, Transduction and Effects on Olfactory Memory. Annals of the New York Academy of Sciences, 1998, 861, 1-15.	1.8	31

#	Article	IF	CITATIONS
55	5-HT4 Receptors: Cloning and Expression of New Splice Variants. Annals of the New York Academy of Sciences, 1998, 861, 49-56.	1.8	50
56	Cloning and expression of human 5-HT4S receptors. Effect of receptor density on their coupling to adenylyl cyclase. NeuroReport, 1997, 8, 3189-3196.	0.6	39
57	Assignment of 5-Hydroxytryptamine Receptor (HTR4) to human chromosome 5 bands q31→q33 by in situ hybridization. Cytogenetic and Genome Research, 1997, 78, 133-134.	0.6	12
58	Cloning, expression and pharmacology of the mouse 5-HT4Lreceptor. FEBS Letters, 1996, 398, 19-25.	1.3	68