Gabriella Castoria

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2670674/publications.pdf Version: 2024-02-01

		87723	56606
91	7,170	38	83
papers	citations	h-index	g-index
132	132	132	6586
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	New Insights and Emerging Therapeutic Approaches in Prostate Cancer. Frontiers in Endocrinology, 2022, 13, 840787.	1.5	6
2	A Small Peptide Targeting the Ligand-Induced Androgen Receptor/Filamin a Interaction Inhibits the Invasive Phenotype of Prostate Cancer Cells. Cells, 2022, 11, 14.	1.8	8
3	New TRPM8 blockers exert anticancer activity over castration-resistant prostate cancer models. European Journal of Medicinal Chemistry, 2022, 238, 114435.	2.6	8
4	Targeting the Nerve Growth Factor Signaling Impairs the Proliferative and Migratory Phenotype of Triple-Negative Breast Cancer Cells. Frontiers in Cell and Developmental Biology, 2021, 9, 676568.	1.8	20
5	Exploiting the mechanism of estrogen-induced transcription to fight breast cancer. Experimental and Molecular Medicine, 2021, 53, 1205-1206.	3.2	1
6	ERÎ ² in Triple-Negative Breast Cancer: Emerging Concepts and Therapeutic Possibilities. Endocrines, 2021, 2, 356-365.	0.4	7
7	The androgen receptor/filamin A complex as a target in prostate cancer microenvironment. Cell Death and Disease, 2021, 12, 127.	2.7	42
8	Communication between cells: exosomes as a delivery system in prostate cancer. Cell Communication and Signaling, 2021, 19, 110.	2.7	16
9	Therapeutic potential of TRPM8 antagonists in prostate cancer. Scientific Reports, 2021, 11, 23232.	1.6	22
10	Acetylation/methylation at lysine 9 in histone H3 as a mark of nucleosome asymmetry in human somatic breast cells. Cell Death Discovery, 2020, 6, 39.	2.0	3
11	ROS in cancer therapy: the bright side of the moon. Experimental and Molecular Medicine, 2020, 52, 192-203.	3.2	1,260
12	Searching for a Putative Mechanism of RIZ2 Tumor-Promoting Function in Cancer Models. Frontiers in Oncology, 2020, 10, 583533.	1.3	4
13	Editorial: The Androgen Receptor in Breast Cancer. Frontiers in Endocrinology, 2020, 11, 636480.	1.5	6
14	Estrogen Receptors in Epithelial-Mesenchymal Transition of Prostate Cancer. Cancers, 2019, 11, 1418.	1.7	45
15	Nerve Growth Factor Induces Proliferation and Aggressiveness in Prostate Cancer Cells. Cancers, 2019, 11, 784.	1.7	47
16	Estrogens Modulate Somatostatin Receptors Expression and Synergize With the Somatostatin Analog Pasireotide in Prostate Cells. Frontiers in Pharmacology, 2019, 10, 28.	1.6	28
17	Androgens Induce Invasiveness of Triple Negative Breast Cancer Cells Through AR/Src/PI3-K Complex Assembly. Scientific Reports, 2019, 9, 4490.	1.6	79
18	Enzymatic and Biological Characterization of Novel Sirtuin Modulators against Cancer. International Journal of Molecular Sciences, 2019, 20, 5654.	1.8	16

#	Article	IF	CITATIONS
19	Breast cancer stem cells: the role of sex steroid receptors. World Journal of Stem Cells, 2019, 11, 594-603.	1.3	29
20	Cross-talk between androgen receptor and nerve growth factor receptor in prostate cancer cells: implications for a new therapeutic approach. Cell Death Discovery, 2018, 4, 5.	2.0	37
21	High-Throughput Screening Identifies Kinase Inhibitors That Increase Dual Adeno-Associated Viral Vector TransductionIn Vitroand in Mouse Retina. Human Gene Therapy, 2018, 29, 886-901.	1.4	11
22	Estrogens and Their Receptors in Prostate Cancer: Therapeutic Implications. Frontiers in Oncology, 2018, 8, 2.	1.3	99
23	Recent advances on bisphenol-A and endocrine disruptor effects on human prostate cancer. Molecular and Cellular Endocrinology, 2017, 457, 35-42.	1.6	96
24	Extranuclear partners of androgen receptor: at the crossroads of proliferation, migration, and neuritogenesis. FASEB Journal, 2017, 31, 1289-1300.	0.2	40
25	Biochemical and Pathophysiological Premises to Positron Emission Tomography With Choline Radiotracers. Journal of Cellular Physiology, 2017, 232, 270-275.	2.0	28
26	Bisphenol A induces cell cycle arrest in primary and prostate cancer cells through EGFR/ERK/p53 signaling pathway activation. Oncotarget, 2017, 8, 115620-115631.	0.8	52
27	Prostate cancer stem cells: the role of androgen and estrogen receptors. Oncotarget, 2016, 7, 193-208.	0.8	91
28	Cross-talk between androgen receptor/filamin A and TrkA regulates neurite outgrowth in PC12 cells. Molecular Biology of the Cell, 2015, 26, 2858-2872.	0.9	37
29	Androgen Receptor Targeted Conjugate for Bimodal Photodynamic Therapy of Prostate Cancer in Vitro. Bioconjugate Chemistry, 2015, 26, 1662-1671.	1.8	29
30	Nuclear receptor-induced transcription is driven by spatially and timely restricted waves of ROS. Nucleus, 2014, 5, 482-491.	0.6	20
31	Role of non-genomic androgen signalling in suppressing proliferation of fibroblasts and fibrosarcoma cells. Cell Death and Disease, 2014, 5, e1548-e1548.	2.7	45
32	Phosphorylation of H3 serine 10 by IKKα governs cyclical production of ROS in estrogen-induced transcription and ensures DNA wholeness. Cell Death and Differentiation, 2014, 21, 1503-1503.	5.0	16
33	A New Avenue toward Androgen Receptor Pan-antagonists: C2 Sterically Hindered Substitution of Hydroxy-propanamides. Journal of Medicinal Chemistry, 2014, 57, 7263-7279.	2.9	53
34	Prolonged exposure to (R)-bicalutamide generates a LNCaP subclone with alteration of mitochondrial genome. Molecular and Cellular Endocrinology, 2014, 382, 314-324.	1.6	13
35	Non-Genomic Androgen Action Regulates Proliferative/Migratory Signaling in Stromal Cells. Frontiers in Endocrinology, 2014, 5, 225.	1.5	30
36	Analysis of the Androgen Receptor/Filamin A Complex in Stromal Cells. Methods in Molecular Biology, 2014, 1204, 109-121.	0.4	5

3

#	Article	IF	CITATIONS
37	Steroid Receptors. Methods in Molecular Biology, 2014, 1204, v.	0.4	2
38	Targeting Androgen Receptor/Src Complex Impairs the Aggressive Phenotype of Human Fibrosarcoma Cells. PLoS ONE, 2013, 8, e76899.	1.1	21
39	Effect of Small Molecules Modulating Androgen Receptor (SARMs) in Human Prostate Cancer Models. PLoS ONE, 2013, 8, e62657.	1.1	20
40	Targeting rapid action of sex-steroid receptors in breast and prostate cancers. Frontiers in Bioscience - Elite, 2012, E4, 453.	0.9	14
41	Polyproline and Tat transduction peptides in the study of the rapid actions of steroid receptors. Steroids, 2012, 77, 974-978.	0.8	15
42	Nonsteroidal Androgen Receptor Ligands: Versatile Syntheses and Biological Data. ACS Medicinal Chemistry Letters, 2012, 3, 454-458.	1.3	9
43	Tyrosine phosphorylation of estradiol receptor by Src regulates its hormone-dependent nuclear export and cell cycle progression in breast cancer cells. Oncogene, 2012, 31, 4868-4877.	2.6	61
44	Non-genomic Action of Steroid Hormones: More Questions than Answers. , 2012, , 1-15.		2
45	Targeting rapid action of sex-steroid receptors in breast and prostate cancers. Frontiers in Bioscience - Elite, 2012, E4, 453-461.	0.9	21
46	Analysis of Androgen Receptor Rapid Actions in Cellular Signaling Pathways: Receptor/Src Association. Methods in Molecular Biology, 2011, 776, 361-370.	0.4	30
47	Targeting rapid action of sex steroid receptors in breast and prostate cancers. Frontiers in Bioscience - Landmark, 2011, 16, 2224.	3.0	29
48	Androgen-Induced Cell Migration: Role of Androgen Receptor/Filamin A Association. PLoS ONE, 2011, 6, e17218.	1.1	89
49	Steroid signaling activation and intracellular localization of sex steroid receptors. Journal of Cell Communication and Signaling, 2010, 4, 161-172.	1.8	20
50	Non-Genomic Action of Sex Steroid Hormones. , 2010, , 365-379.		1
51	Cross talk between epidermal growth factor (EGF) receptor and extra nuclear steroid receptors in cell lines. Molecular and Cellular Endocrinology, 2010, 327, 19-24.	1.6	30
52	Cell proliferation regulated by estradiol receptor: Therapeutic implications. Steroids, 2010, 75, 524-527.	0.8	28
53	Role of Cyclic AMP Response Element–Binding Protein in Insulin-like Growth Factor-I Receptor Up-regulation by Sex Steroids in Prostate Cancer Cells. Cancer Research, 2009, 69, 7270-7277.	0.4	41
54	Signaling-dependent nuclear export of estradiol receptor controls cell cycle progression in breast cancer cells. Molecular and Cellular Endocrinology, 2009, 308, 26-31.	1.6	13

#	Article	IF	CITATIONS
55	Sex-steroid hormones and EGF signalling in breast and prostate cancer cells: Targeting the association of Src with steroid receptors. Steroids, 2008, 73, 880-884.	0.8	41
56	Hormone-dependent nuclear export of estradiol receptor and DNA synthesis in breast cancer cells. Journal of Cell Biology, 2008, 182, 327-340.	2.3	74
57	Integrating signals between cAMP and MAPK pathways in breast cancer. Frontiers in Bioscience - Landmark, 2008, 13, 1318.	3.0	44
58	Growth factor-like activity of gliadin, an alimentary protein: implications for coeliac disease. Gut, 2007, 56, 480-488.	6.1	96
59	Inhibition of Estradiol Receptor/Src Association and Cell Growth by an Estradiol Receptor α Tyrosine-Phosphorylated Peptide. Molecular Cancer Research, 2007, 5, 1213-1221.	1.5	86
60	Src-dependent signalling pathway regulation by sex-steroid hormones: Therapeutic implications. International Journal of Biochemistry and Cell Biology, 2007, 39, 1343-1348.	1.2	38
61	Inhibition of the SH3 domain-mediated binding of Src to the androgen receptor and its effect on tumor growth. Oncogene, 2007, 26, 6619-6629.	2.6	94
62	Crosstalk between EGFR and Extranuclear Steroid Receptors. Annals of the New York Academy of Sciences, 2006, 1089, 194-200.	1.8	76
63	Steroid Receptor Regulation of Epidermal Growth Factor Signaling through Src in Breast and Prostate Cancer Cells: Steroid Antagonist Action. Cancer Research, 2005, 65, 10585-10593.	0.4	170
64	Role of Atypical Protein Kinase C in Estradiol-Triggered G 1 /S Progression of MCF-7 Cells. Molecular and Cellular Biology, 2004, 24, 7643-7653.	1.1	63
65	Differentiation of H9c2 cardiomyoblasts: The role of adenylate cyclase system. Journal of Cellular Physiology, 2004, 198, 408-416.	2.0	38
66	Rapid signalling pathway activation by androgens in epithelial and stromal cells. Steroids, 2004, 69, 517-522.	0.8	66
67	Androgen-stimulated DNA synthesis and cytoskeletal changes in fibroblasts by a nontranscriptional receptor action. Journal of Cell Biology, 2003, 161, 547-556.	2.3	128
68	Interactions of Estrogen Receptors with Signal Cascade Molecules. , 2003, , 77-83.		1
69	Sex steroid hormones act as growth factors. Journal of Steroid Biochemistry and Molecular Biology, 2002, 83, 31-35.	1.2	96
70	<i>Src</i> Is an Initial Target of Sex Steroid Hormone Action. Annals of the New York Academy of Sciences, 2002, 963, 185-190.	1.8	59
71	PI3-kinase in concert with Src promotes the S-phase entry of oestradiol-stimulated MCF-7 cells. EMBO Journal, 2001, 20, 6050-6059.	3.5	413
72	Steroid-induced androgen receptor-oestradiol receptor beta-Src complex triggers prostate cancer cell proliferation. EMBO Journal, 2000, 19, 5406-5417.	3.5	606

#	Article	IF	CITATIONS
73	Non-transcriptional action of oestradiol and progestin triggers DNA synthesis. EMBO Journal, 1999, 18, 2500-2510.	3.5	245
74	Activation of the Src/p21ras/Erk pathway by progesterone receptor via cross-talk with estrogen receptor. EMBO Journal, 1998, 17, 2008-2018.	3.5	556
75	Protein Tyrosine Phosphorylation and Estradiol Action. Annals of the New York Academy of Sciences, 1996, 784, 149-172.	1.8	24
76	Tyrosine kinase/p21ras/MAP-kinase pathway activation by estradiol-receptor complex in MCF-7 cells EMBO Journal, 1996, 15, 1292-1300.	3.5	845
77	A 67 kDa non-hormone binding estradiol receptor is present in human mammary cancers. , 1996, 65, 574-583.		11
78	Epidermal growth factor induces protein tyrosine phosphorylation and association of p190 with ras-GTP-ase activating protein in Caco-2 cells. FEBS Letters, 1994, 353, 16-20.	1.3	12
79	Properties of a purified estradiol-dependent calf uterus tyrosine kinase. Biochemistry, 1993, 32, 1740-1750.	1.2	86
80	Phosphorylation and estradiol binding of estrogen receptor in hormone-dependent and hormone-independent GR mouse mammary tumors. International Journal of Cancer, 1992, 51, 733-739.	2.3	19
81	In vitro phosphorylation and hormone binding activation of the synthetic wild type human estradiol receptor. Journal of Steroid Biochemistry and Molecular Biology, 1991, 38, 407-413.	1.2	37
82	In VitroInteraction of Estradiol Receptor with Ca2+-Calmodulin. Molecular Endocrinology, 1988, 2, 167-174.	3.7	53
83	Phosphorylation of Estradiol Receptor on Tyrosine and Interaction of Estradiol and Glucocorticoid Receptors with Antiphosphotyrosine Antibodies. , 1988, 231, 519-540.		5
84	[54] Calmodulin-stimulated estradiol receptor-tyrosine kinase I. Methods in Enzymology, 1987, 139, 731-744.	0.4	14
85	Phosphorylation on tyrosine of oestradiol-17β receptor in uterus and interaction of oestradiol-17β and glucocorticoid receptors with antiphosphotyrosine antibodies. The Journal of Steroid Biochemistry, 1987, 27, 245-253.	1.3	16
86	Activation-inactivation of hormone binding sites of the oestradiol-17β receptor is a multiregulated process. The Journal of Steroid Biochemistry, 1986, 24, 39-43.	1.3	23
87	PHOSPHORYLATION ON TYROSINE OF THE 173-ESTRADIOL RECEPTOR. , 1985, , 279-298.		2
88	Direct evidence of in vitro phosphorylation-dephosphorylation of the estradiol-17β receptor. role of Ca2+-Calmodulin in the activation of hormone binding sites. The Journal of Steroid Biochemistry, 1984, 20, 31-35.	1.3	65
89	Evidence that invivo estradiol receptor translocated into nuclei is dephosphorylated and released into cytoplasm. Biochemical and Biophysical Research Communications, 1982, 106, 149-157.	1.0	53
90	ATP-dependent enzyme activating hormone binding of estradiol receptor. Biochemical and Biophysical Research Communications, 1981, 101, 1171-1178.	1.0	75

#	Article	IF	CITATIONS
91	Dephosphorylation of oestradiol nuclear receptor <i>in vitro</i> . A hypothesis on the mechanism of action of non-steroidal anti-oestrogens. Biochemical Journal, 1981, 198, 699-702.	1.7	38