Songtao Shi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2669583/publications.pdf

Version: 2024-02-01

		61687	71088
81	15,265	45	80
papers	citations	h-index	g-index
85	85	85	15635
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Mesenchymal stem cells empower T cells in the lymph nodes via MCP-1/PD-L1 axis. Cell Death and Disease, 2022, 13, 365.	2.7	2
2	Electrostatic Chargeâ€Mediated Apoptotic Vesicle Biodistribution Attenuates Sepsis by Switching Neutrophil NETosis to Apoptosis. Small, 2022, 18, e2200306.	5.2	19
3	Stem Cells from Human Exfoliated Deciduous Teeth Ameliorate Autistic-Like Behaviors of <i>SHANK3</i> Mutant Beagle Dogs. Stem Cells Translational Medicine, 2022, 11, 778-789.	1.6	4
4	Apoptotic vesicles inherit SOX2 from pluripotent stem cells to accelerate wound healing by energizing mesenchymal stem cells. Acta Biomaterialia, 2022, 149, 258-272.	4.1	16
5	Autophagy controls mesenchymal stem cell therapy in psychological stress colitis mice. Autophagy, 2021, 17, 2586-2603.	4.3	15
6	Exosomes from TNF-α-treated human gingiva-derived MSCs enhance M2 macrophage polarization and inhibit periodontal bone loss. Acta Biomaterialia, 2021, 122, 306-324.	4.1	203
7	Therapeutic Potential of Stem Cells from Human Exfoliated Deciduous Teeth Infusion into Patients with Type 2 Diabetes Depends on Basal Lipid Levels and Islet Function. Stem Cells Translational Medicine, 2021, 10, 956-967.	1.6	15
8	Apoptotic vesicles restore liver macrophage homeostasis to counteract type 2 diabetes. Journal of Extracellular Vesicles, 2021, 10, e12109.	5.5	90
9	Emerging understanding of apoptosis in mediating mesenchymal stem cell therapy. Cell Death and Disease, 2021, 12, 596.	2.7	42
10	CD146 controls the quality of clinical grade mesenchymal stem cells from human dental pulp. Stem Cell Research and Therapy, 2021, 12, 488.	2.4	26
11	Apoptotic Extracellular Vesicles Ameliorate Multiple Myeloma by Restoring Fas-Mediated Apoptosis. ACS Nano, 2021, 15, 14360-14372.	7.3	47
12	Dephosphorylation of Caveolin-1 Controls C-X-C Motif Chemokine Ligand 10 Secretion in Mesenchymal Stem Cells to Regulate the Process of Wound Healing. Frontiers in Cell and Developmental Biology, 2021, 9, 725630.	1.8	2
13	Dental Pulp Stem Cells: From Discovery to Clinical Application. Journal of Endodontics, 2020, 46, S46-S55.	1.4	64
14	Ionomycin ameliorates hypophosphatasia via rescuing alkaline phosphatase deficiency-mediated L-type Ca2+ channel internalization in mesenchymal stem cells. Bone Research, 2020, 8, 19.	5.4	9
15	Mechanical force-driven TNFα endocytosis governs stem cell homeostasis. Bone Research, 2020, 8, 44.	5.4	13
16	Clearance of apoptotic cells by mesenchymal stem cells contributes to immunosuppression via PGE2. EBioMedicine, 2019, 45, 341-350.	2.7	56
17	Transplantation of dental tissue-derived mesenchymal stem cells ameliorates nephritis in lupus mice. Annals of Translational Medicine, 2019, 7, 132-132.	0.7	22
18	Mesenchymal stem cell transplantation alleviates experimental Sjögren's syndrome through IFN-β/IL-27 signaling axis. Theranostics, 2019, 9, 8253-8265.	4.6	42

#	Article	IF	Citations
19	Inhibition of Tet1- and Tet2-mediated DNA demethylation promotes immunomodulation of periodontal ligament stem cells. Cell Death and Disease, 2019, 10, 780.	2.7	27
20	Specific functions of TET1 and TET2 in regulating mesenchymal cell lineage determination. Epigenetics and Chromatin, 2019, 12, 3.	1.8	53
21	MicroRNA-663 induces immune dysregulation by inhibiting TGF- \hat{l}^21 production in bone marrow-derived mesenchymal stem cells in patients with systemic lupus erythematosus. Cellular and Molecular Immunology, 2019, 16, 260-274.	4.8	50
22	PD-1 is required to maintain stem cell properties in human dental pulp stem cells. Cell Death and Differentiation, 2018, 25, 1350-1360.	5.0	31
23	A Long-Term Follow-Up Study of Allogeneic Mesenchymal Stem/Stromal Cell Transplantation in Patients with Drug-Resistant Systemic Lupus Erythematosus. Stem Cell Reports, 2018, 10, 933-941.	2.3	79
24	The Fas/Fap- 1 /Cav- 1 complex regulates IL- 1 RA secretion in mesenchymal stem cells to accelerate wound healing. Science Translational Medicine, $2018, 10, .$	5 . 8	131
25	Evidence for Kaposi Sarcoma Originating from Mesenchymal Stem Cell through KSHV-induced Mesenchymal-to-Endothelial Transition. Cancer Research, 2018, 78, 230-245.	0.4	63
26	Alpl prevents bone ageing sensitivity by specifically regulating senescence and differentiation in mesenchymal stem cells. Bone Research, 2018, 6, 27.	5.4	50
27	Hydrogen sulfide maintains dental pulp stem cell function via TRPV1-mediated calcium influx. Cell Death Discovery, 2018, 4, 1.	2.0	43
28	Circulating apoptotic bodies maintain mesenchymal stem cell homeostasis and ameliorate osteopenia via transferring multiple cellular factors. Cell Research, 2018, 28, 918-933.	5.7	165
29	Hydrogen sulfide promotes immunomodulation of gingiva-derived mesenchymal stem cells via the Fas/FasL coupling pathway. Stem Cell Research and Therapy, 2018, 9, 62.	2.4	33
30	Association between Type I interferon and depletion and dysfunction of endothelial progenitor cells in C57BL/6 mice deficient in both apolipoprotein E and Fas ligand. Current Research in Translational Medicine, 2018, 66, 71-82.	1.2	8
31	Deciduous autologous tooth stem cells regenerate dental pulp after implantation into injured teeth. Science Translational Medicine, 2018, 10, .	5.8	300
32	Tet1 and Tet2 maintain mesenchymal stem cell homeostasis via demethylation of the P2rX7 promoter. Nature Communications, 2018, 9, 2143.	5 . 8	85
33	Mesenchymal Stem Cells Control Complement C5 Activation by Factor H in Lupus Nephritis. EBioMedicine, 2018, 32, 21-30.	2.7	26
34	Mesenchymal stem cell transplantation in tight-skin mice identifies miR-151-5p as a therapeutic target for systemic sclerosis. Cell Research, 2017, 27, 559-577.	5.7	89
35	Mesenchymal Stem Cells and Their Role in Dental Medicine. Dental Clinics of North America, 2017, 61, 161-172.	0.8	12
36	A Method to Isolate, Purify, and Characterize Human Periodontal Ligament Stem Cells. Methods in Molecular Biology, 2017, 1537, 413-427.	0.4	31

#	Article	IF	CITATIONS
37	Alginate/hyaluronic acid hydrogel delivery system characteristics regulate the differentiation of periodontal ligament stem cells toward chondrogenic lineage. Journal of Materials Science: Materials in Medicine, 2017, 28, 162.	1.7	47
38	Cellular and molecular mechanisms of alcohol-induced osteopenia. Cellular and Molecular Life Sciences, 2017, 74, 4443-4453.	2.4	60
39	IL-36 Induces Bisphosphonate-Related Osteonecrosis of the Jaw-Like Lesions in Mice by Inhibiting TGF-Î ² -Mediated Collagen Expression. Journal of Bone and Mineral Research, 2017, 32, 309-318.	3.1	35
40	Gingival Mesenchymal Stem Cell (GMSC) Delivery System Based on RGDâ€Coupled Alginate Hydrogel with Antimicrobial Properties: A Novel Treatment Modality for Periâ€Implantitis. Journal of Prosthodontics, 2016, 25, 105-115.	1.7	69
41	Wnt/ \hat{l}^2 -Catenin Signaling Determines the Vasculogenic Fate of Postnatal Mesenchymal Stem Cells. Stem Cells, 2016, 34, 1576-1587.	1.4	109
42	Chronic High Dose Alcohol Induces Osteopenia via Activation of mTOR Signaling in Bone Marrow Mesenchymal Stem Cells. Stem Cells, 2016, 34, 2157-2168.	1.4	51
43	TOOTH (The Open study Of dental pulp stem cell Therapy in Humans): Study protocol for evaluating safety and feasibility of autologous human adult dental pulp stem cell therapy in patients with chronic disability after stroke. International Journal of Stroke, 2016, 11, 575-585.	2.9	44
44	Treatment of periodontal intrabony defects using autologous periodontal ligament stem cells: a randomized clinical trial. Stem Cell Research and Therapy, 2016, 7, 33.	2.4	229
45	Alcohol-induced suppression of KDM6B dysregulates the mineralization potential in dental pulp stem cells. Stem Cell Research, 2016, 17, 111-121.	0.3	39
46	Transplantation of gingiva-derived mesenchymal stem cells ameliorates collagen-induced arthritis. Arthritis Research and Therapy, 2016, 18, 262.	1.6	32
47	Interferon-gamma improves impaired dentinogenic and immunosuppressive functions of irreversible pulpitis-derived human dental pulp stem cells. Scientific Reports, 2016, 6, 19286.	1.6	31
48	Mutations in WNT10B Are Identified in Individuals with Oligodontia. American Journal of Human Genetics, 2016, 99, 195-201.	2.6	91
49	Muscle Tissue Engineering Using Gingival Mesenchymal Stem Cells Encapsulated in Alginate Hydrogels Containing Multiple Growth Factors. Annals of Biomedical Engineering, 2016, 44, 1908-1920.	1.3	71
50	Nanofibrous spongy microspheres for the delivery of hypoxia-primed human dental pulp stem cells to regenerate vascularized dental pulp. Acta Biomaterialia, 2016, 33, 225-234.	4.1	107
51	Human Mesenchymal Stem Cells of Diverse Origins Support Persistent Infection with Kaposi's Sarcoma-Associated Herpesvirus and Manifest Distinct Angiogenic, Invasive, and Transforming Phenotypes. MBio, 2016, 7, e02109-15.	1.8	38
52	Allogeneic mesenchymal stem cells inhibited T follicular helper cell generation in rheumatoid arthritis. Scientific Reports, 2015, 5, 12777.	1.6	65
53	In vivo hepatogenic capacity and therapeutic potential of stem cells from human exfoliated deciduous teeth in liver fibrosis in mice. Stem Cell Research and Therapy, 2015, 6, 171.	2.4	67
54	Regulation of the Stem Cell–Host Immune System Interplay Using Hydrogel Coencapsulation System with an Antiâ€Inflammatory Drug. Advanced Functional Materials, 2015, 25, 2296-2307.	7.8	66

#	Article	IF	CITATIONS
55	Transplantation of mesenchymal stem cells ameliorates secondary osteoporosis through interleukin-17-impaired functions of recipient bone marrow mesenchymal stem cells in MRL/lpr mice. Stem Cell Research and Therapy, 2015, 6, 104.	2.4	53
56	Fabrication, characterization and cell cultures on a novel chitosan scaffold. Bio-Medical Materials and Engineering, 2015, 25, 121-135.	0.4	4
57	Organ-Level Quorum Sensing Directs Regeneration in Hair Stem Cell Populations. Cell, 2015, 161, 277-290.	13.5	195
58	Hydrogen Sulfide Promotes Tet1- and Tet2-Mediated Foxp3 Demethylation to Drive Regulatory T Cell Differentiation and Maintain Immune Homeostasis. Immunity, 2015, 43, 251-263.	6.6	276
59	MSC Transplantation Improves Osteopenia via Epigenetic Regulation of Notch Signaling in Lupus. Cell Metabolism, 2015, 22, 606-618.	7.2	195
60	mTOR inhibition rescues osteopenia in mice with systemic sclerosis. Journal of Experimental Medicine, 2015, 212, 73-91.	4.2	67
61	Mesenchymal Stem Cells: Diseases and Cure. FASEB Journal, 2015, 29, 359.2.	0.2	0
62	Chondrogenesis in scleral stem/progenitor cells and its association with form-deprived myopia in mice. Molecular Vision, 2015, 21, 138-47.	1.1	14
63	Impaired Bone Resorption and Woven Bone Formation Are Associated with Development of Osteonecrosis of the Jaw-Like Lesions by Bisphosphonate and Anti–Receptor Activator of NF-κB Ligand Antibody in Mice. American Journal of Pathology, 2014, 184, 3084-3093.	1.9	74
64	Secretion of Shh by a Neurovascular Bundle Niche Supports Mesenchymal Stem Cell Homeostasis in the Adult Mouse Incisor. Cell Stem Cell, 2014, 14, 160-173.	5.2	350
65	Application of stem cells derived from the periodontal ligament orÂgingival tissue sources for tendon tissue regeneration. Biomaterials, 2014, 35, 2642-2650.	5.7	111
66	Impaired B Cell Inhibition by Lupus Bone Marrow Mesenchymal Stem Cells Is Caused by Reduced CCL2 Expression. Journal of Immunology, 2014, 193, 5306-5314.	0.4	71
67	Hydrogen Sulfide Maintains Mesenchymal Stem Cell Function and Bone Homeostasis via Regulation of Ca2+ Channel Sulfhydration. Cell Stem Cell, 2014, 15, 66-78.	5.2	213
68	Evaluation of serum biomarkers IL-17 and CTX for BRONJ: a pilot clinical case-control study. Journal of the California Dental Association, 2013, 41, 819-23.	0.0	2
69	Mesenchymal-Stem-Cell-Induced Immunoregulation Involves FAS-Ligand-/FAS-Mediated T Cell Apoptosis. Cell Stem Cell, 2012, 10, 544-555.	5.2	608
70	Cryopreserved Dental Pulp Tissues of Exfoliated Deciduous Teeth Is a Feasible Stem Cell Resource for Regenerative Medicine. PLoS ONE, 2012, 7, e51777.	1.1	133
71	Mesenchymal stem cell–based tissue regeneration is governed by recipient T lymphocytes via IFN-γ and TNF-α. Nature Medicine, 2011, 17, 1594-1601.	15.2	551
72	Immunomodulatory properties of stem cells from human exfoliated deciduous teeth. Stem Cell Research and Therapy, 2010, $1,5$.	2.4	280

#	Article	IF	CITATIONS
73	Mesenchymal Stem Cells Derived from Human Gingiva Are Capable of Immunomodulatory Functions and Ameliorate Inflammation-Related Tissue Destruction in Experimental Colitis. Journal of Immunology, 2009, 183, 7787-7798.	0.4	673
74	Emerging opportunities for the next generation of dental implants?. Dentistry Today, 2009, 28, 98-9.	0.1	3
75	Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche. Nature Medicine, 2007, 13, 1219-1227.	15.2	1,211
76	Stromal-derived factor-1 promotes the growth, survival, and development of human bone marrow stromal stem cells. Blood, 2005, 105, 3793-3801.	0.6	341
77	Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet, The, 2004, 364, 149-155.	6.3	2,920
78	Perivascular Niche of Postnatal Mesenchymal Stem Cells in Human Bone Marrow and Dental Pulp. Journal of Bone and Mineral Research, 2003, 18, 696-704.	3.1	1,266
79	SHED: Stem cells from human exfoliated deciduous teeth. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 5807-5812.	3.3	2,404
80	Management of aldose reductase mRNA abundance in rat lens undergoing reversal of galactose induced cataracts. A model for gene response to changes in the environment. Molecular and Cellular Biochemistry, 1990, 95, 55-60.	1.4	9
81	Multipotent Stem Cells in Dental Pulp. , 0, , 187-206.		3