Jens Christian Frisvad

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2669217/jens-christian-frisvad-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

279	15,342	73	111
papers	citations	h-index	g-index
297	17,474 ext. citations	4.7	6.57
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
279	The mysterious mould outbreak - A comprehensive fungal colonisation in a climate-controlled museum repository challenges the environmental guidelines for heritage collections. <i>Journal of Cultural Heritage</i> , 2022 , 55, 78-87	2.9	1
278	Recommendations To Prevent Taxonomic Misidentification of Genome-Sequenced Fungal Strains. <i>Microbiology Resource Announcements</i> , 2021 , 10, e0107420	1.3	12
277	Taxonomy Driven Discovery of Polyketides from. <i>Journal of Natural Products</i> , 2021 , 84, 979-985	4.9	3
276	Mass Spectrometry-Based Network Analysis Reveals New Insights Into the Chemodiversity of 28 Species in Aspergillus section Flavi. <i>Frontiers in Fungal Biology</i> , 2021 , 2,	0.3	1
275	Taichunins E-T, Isopimarane Diterpenes and a 20Isopimarane, from (IBT 19404): Structures and Inhibitory Effects on RANKL-Induced Formation of Multinuclear Osteoclasts. <i>Journal of Natural Products</i> , 2021 , 84, 2475-2485	4.9	O
274	Growth Enhancement of Arabidopsis () and Onion () With Inoculation of Three Newly Identified Mineral-Solubilizing Fungi in the Genus Section. <i>Frontiers in Microbiology</i> , 2021 , 12, 705896	5.7	2
273	Discovery and Extrolite Production of Three New Species of Belonging to Sections and from Freshwater in Korea. <i>Journal of Fungi (Basel, Switzerland)</i> , 2021 , 7,	5.6	3
272	A Pilot Study on Baseline Fungi and Moisture Indicator Fungi in Danish Homes. <i>Journal of Fungi (Basel, Switzerland)</i> , 2021 , 7,	5.6	6
271	Review of Oxepine-Pyrimidinone-Ketopiperazine Type Nonribosomal Peptides. <i>Metabolites</i> , 2020 , 10,	5.6	2
270	Fungal secretome profile categorization of CAZymes by function and family corresponds to fungal phylogeny and taxonomy: Example Aspergillus and Penicillium. <i>Scientific Reports</i> , 2020 , 10, 5158	4.9	15
269	A comparative genomics study of 23 Aspergillus species from section Flavi. <i>Nature Communications</i> , 2020 , 11, 1106	17.4	54
268	Identification of SclB, a Zn(II)Cys transcription factor involved in sclerotium formation in Aspergillus niger. <i>Fungal Genetics and Biology</i> , 2020 , 139, 103377	3.9	10
267	Acrophiarin (antibiotic S31794/F-1) from Penicillium arenicola shares biosynthetic features with both Aspergillus- and Leotiomycete-type echinocandins. <i>Environmental Microbiology</i> , 2020 , 22, 2292-23	1 ^{5, 2}	3
266	New azaphilones from Aspergillus neoglaber. <i>AMB Express</i> , 2020 , 10, 145	4.1	3
265	New species in section and an overview of section. <i>International Journal of Systematic and Evolutionary Microbiology</i> , 2020 , 70, 5401-5416	2.2	2
264	New section and species in. <i>MycoKeys</i> , 2020 , 68, 75-113	2.4	7
263	Fungal communities in rice cultivated in different Brazilian agroclimatic zones: From field to market. <i>Food Microbiology</i> , 2020 , 87, 103378	6	5

(2018-2020)

262	Fungal Partially Reducing Polyketides and Related Natural Products From Aspergillus, Penicillium, and Talaromyces 2020 , 313-332		2	
261	Fungal and chemical diversity in hay and wrapped haylage for equine feed. <i>Mycotoxin Research</i> , 2020 , 36, 159-172	4	3	
260	The polyphasic re-identification of a Brazilian Aspergillus section Terrei collection led to the discovery of two new species. <i>Mycological Progress</i> , 2020 , 19, 885-903	1.9	5	
259	Diversity within Clade and Description of a New Species: sp. nov. <i>Journal of Fungi (Basel, Switzerland)</i> , 2020 , 6,	5.6	3	
258	Growing a circular economy with fungal biotechnology: a white paper. <i>Fungal Biology and Biotechnology</i> , 2020 , 7, 5	7.5	97	
257	Mass Spectrometry Guided Discovery and Design of Novel Asperphenamate Analogs From Reveals an Extraordinary NRPS Flexibility. <i>Frontiers in Microbiology</i> , 2020 , 11, 618730	5.7	1	
256	Aspergillus section Flavi diversity and the role of A. novoparasiticus in aflatoxin contamination in the sugarcane production chain. <i>International Journal of Food Microbiology</i> , 2019 , 293, 17-23	5.8	6	
255	Mutations, Extrolite Profiles, and Antifungal Susceptibility in Clinical and Environmental Isolates of the Aspergillus viridinutans Species Complex. <i>Antimicrobial Agents and Chemotherapy</i> , 2019 , 63,	5.9	9	
254	Depiction of secondary metabolites and antifungal activity of DTU001. <i>Synthetic and Systems Biotechnology</i> , 2019 , 4, 142-149	4.2	16	
253	Fungal diversity notes 1036🛘 150: taxonomic and phylogenetic contributions on genera and species of fungal taxa. <i>Fungal Diversity</i> , 2019 , 96, 1-242	17.6	76	
252	Taichunins A-D, Norditerpenes from Aspergillus taichungensis (IBT 19404). <i>Journal of Natural Products</i> , 2019 , 82, 1377-1381	4.9	4	
251	Taxonomic revision of the biotechnologically important species Penicillium oxalicum with the description of two new species from acidic and saline soils. <i>Mycological Progress</i> , 2019 , 18, 215-228	1.9	6	
250	Cyclopiamines C and D: Epoxide Spiroindolinone Alkaloids from Penicillium sp. CML 3020. <i>Journal of Natural Products</i> , 2018 , 81, 785-790	4.9	8	
249	New Penicillium and Talaromyces species from honey, pollen and nests of stingless bees. <i>Antonie Van Leeuwenhoek</i> , 2018 , 111, 1883-1912	2.1	35	
248	Structural and stereochemical diversity in prenylated indole alkaloids containing the bicyclo[2.2.2]diazaoctane ring system from marine and terrestrial fungi. <i>Natural Product Reports</i> , 2018 , 35, 532-558	15.1	51	
247	Linking secondary metabolites to gene clusters through genome sequencing of six diverse species. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, E753-E761	11.5	78	
246	Diversity of Aspergillus section Nigri on the surface of Vitis labrusca and its hybrid grapes. <i>International Journal of Food Microbiology</i> , 2018 , 268, 53-60	5.8	19	
245	Occurrence of Aspergillus section Flavi and aflatoxins in Brazilian rice: From field to market. International Journal of Food Microbiology, 2018, 266, 213-221	5.8	33	

244	The FlbA-regulated predicted transcription factor Fum21 of Aspergillus niger is involved in fumonisin production. <i>Antonie Van Leeuwenhoek</i> , 2018 , 111, 311-322	2.1	15
243	Secondary metabolite production by cereal-associated penicillia during cultivation on cereal grains. <i>Applied Microbiology and Biotechnology</i> , 2018 , 102, 8477-8491	5.7	5
242	Reconstruction of 24 Penicillium genome-scale metabolic models shows diversity based on their secondary metabolism. <i>Biotechnology and Bioengineering</i> , 2018 , 115, 2604-2612	4.9	7
241	Polyphasic data support the splitting of Aspergillus candidus into two species; proposal of Aspergillus dobrogensis sp. nov. <i>International Journal of Systematic and Evolutionary Microbiology</i> , 2018 , 68, 995-1011	2.2	15
240	Uncovering secondary metabolite evolution and biosynthesis using gene cluster networks and genetic dereplication. <i>Scientific Reports</i> , 2018 , 8, 17957	4.9	22
239	Identification of the decumbenone biosynthetic gene cluster in and the importance for production of calbistrin. <i>Fungal Biology and Biotechnology</i> , 2018 , 5, 18	7.5	14
238	Safety of the fungal workhorses of industrial biotechnology: update on the mycotoxin and secondary metabolite potential of Aspergillus niger, Aspergillus oryzae, and Trichoderma reesei. <i>Applied Microbiology and Biotechnology</i> , 2018 , 102, 9481-9515	5.7	92
237	Investigation of inter- and intraspecies variation through genome sequencing of Aspergillus section Nigri. <i>Nature Genetics</i> , 2018 , 50, 1688-1695	36.3	100
236	Comparative genomics reveals high biological diversity and specific adaptations in the industrially and medically important fungal genus Aspergillus. <i>Genome Biology</i> , 2017 , 18, 28	18.3	261
235	The biodiversity of Aspergillus section Flavi and aflatoxins in the Brazilian peanut production chain. <i>Food Research International</i> , 2017 , 94, 101-107	7	30
234	Global analysis of biosynthetic gene clusters reveals vast potential of secondary metabolite production in Penicillium species. <i>Nature Microbiology</i> , 2017 , 2, 17044	26.6	136
233	Investigation of the indigenous fungal community populating barley grains: Secretomes and xylanolytic potential. <i>Journal of Proteomics</i> , 2017 , 169, 153-164	3.9	8
232	Discovery of Aspergillus frankstonensis sp. nov. during environmental sampling for animal and human fungal pathogens. <i>PLoS ONE</i> , 2017 , 12, e0181660	3.7	14
231	Response to Pitt & Taylor 2016: Conservation of Aspergillus with A. niger as the conserved type is unnecessary and potentially disruptive. <i>Taxon</i> , 2017 , 66, 1439-1446	0.8	4
230	Aspergillus labruscus sp. nov., a new species of Aspergillus section Nigri discovered in Brazil. <i>Scientific Reports</i> , 2017 , 7, 6203	4.9	14
229	Taxonomic novelties in Aspergillus section Fumigati: A. tasmanicus sp. nov., induction of sexual state in A. turcosus and overview of related species. <i>Plant Systematics and Evolution</i> , 2017 , 303, 787-806	5 ^{1.3}	9
228	Occurrence and fumonisin B producing potential of Aspergillus section Nigri in Brazil nuts. <i>Mycotoxin Research</i> , 2017 , 33, 49-58	4	7
227	Biodiversity of mycobiota throughout the Brazil nut supply chain: From rainforest to consumer. <i>Food Microbiology</i> , 2017 , 61, 14-22	6	15

(2015-2017)

226	Physiological characterization of secondary metabolite producing cell factories. <i>Fungal Biology and Biotechnology</i> , 2017 , 4, 8	7.5	19	
225	A Dereplication and Bioguided Discovery Approach to Reveal New Compounds from a Marine-Derived Fungus Stilbella fimetaria. <i>Marine Drugs</i> , 2017 , 15,	6	18	
224	Comments on "Screening and Identification of Novel Ochratoxin A-Producing Fungi from Grapes. Toxins 2016, 8, 333"-In Reporting Ochratoxin A Production from Strains of Aspergillus, Penicillium and Talaromyces. <i>Toxins</i> , 2017 , 9,	4.9	7	
223	Isolation, Characterization, and Selection of Molds Associated to Fermented Black Table Olives. <i>Frontiers in Microbiology</i> , 2017 , 8, 1356	5.7	18	
222	Aspergillus mulundensis sp. nov., a new species for the fungus producing the antifungal echinocandin lipopeptides, mulundocandins. <i>Journal of Antibiotics</i> , 2016 , 69, 141-8	3.7	20	
221	Four novel Talaromyces species isolated from leaf litter from Colombian Amazon rain forests. <i>Mycological Progress</i> , 2016 , 15, 1041-1056	1.9	24	
220	Penicillium arizonense, a new, genome sequenced fungal species, reveals a high chemical diversity in secreted metabolites. <i>Scientific Reports</i> , 2016 , 6, 35112	4.9	26	
219	Taichunamides: Prenylated Indole Alkaloids from Aspergillus taichungensis (IBT 19404). <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 1128-32	16.4	51	
218	Aspergillus europaeus sp. nov., a widely distributed soil-borne species related to A. wentii (section Cremei). <i>Plant Systematics and Evolution</i> , 2016 , 302, 641-650	1.3	17	
217	Diversity in Secondary Metabolites Including Mycotoxins from Strains of Aspergillus Section Nigri Isolated from Raw Cashew Nuts from Benin, West Africa. <i>PLoS ONE</i> , 2016 , 11, e0164310	3.7	17	
216	Comments on "Mycobiota and Mycotoxins in Traditional Medicinal Seeds from China. Toxins 2015, 7, 3858-3875"- in Attributing Ochratoxin A Biosynthesis Within the Genus Penicillium Occurring on Natural Agricultural Produce. <i>Toxins</i> , 2016 , 8,	4.9	2	
215	Production of Secondary Metabolites in Extreme Environments: Food- and Airborne Wallemia spp. Produce Toxic Metabolites at Hypersaline Conditions. <i>PLoS ONE</i> , 2016 , 11, e0169116	3.7	27	
214	Taichunamides: Prenylated Indole Alkaloids from Aspergillus taichungensis (IBT 19404). <i>Angewandte Chemie</i> , 2016 , 128, 1140-1144	3.6	7	
213	The global regulator LaeA controls production of citric acid and endoglucanases in Aspergillus carbonarius. <i>Journal of Industrial Microbiology and Biotechnology</i> , 2016 , 43, 1139-47	4.2	16	
212	Production of the Fusarium Mycotoxin Moniliformin by Penicillium melanoconidium. <i>Journal of Agricultural and Food Chemistry</i> , 2016 , 64, 4505-10	5.7	20	
211	Occurrence of Aspergillus section Flavi and section Nigri and aflatoxins in raw cashew kernels (Anacardium occidentale L.) from Benin. <i>LWT - Food Science and Technology</i> , 2016 , 70, 71-77	5.4	9	
210	A reappraisal of Aspergillus section Nidulantes with descriptions of two new sterigmatocystin-producing species. <i>Plant Systematics and Evolution</i> , 2016 , 302, 1267-1299	1.3	35	
209	Fungal Chemotaxonomy. <i>Fungal Biology</i> , 2015 , 103-121	2.3	3	

208	Combining UHPLC-High Resolution MS and Feeding of Stable Isotope Labeled Polyketide Intermediates for Linking Precursors to End Products. <i>Journal of Natural Products</i> , 2015 , 78, 1518-25	4.9	6
207	Induced sclerotium formation exposes new bioactive metabolites from Aspergillus sclerotiicarbonarius. <i>Journal of Antibiotics</i> , 2015 , 68, 603-8	3.7	12
206	Reconstitution of biosynthetic machinery for the synthesis of the highly elaborated indole diterpene penitrem. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 5748-52	16.4	73
205	Genome and physiology of the ascomycete filamentous fungus Xeromyces bisporus, the most xerophilic organism isolated to date. <i>Environmental Microbiology</i> , 2015 , 17, 496-513	5.2	29
204	Chemodiversity in the genus Aspergillus. Applied Microbiology and Biotechnology, 2015, 99, 7859-77	5.7	81
203	Five new Talaromyces species with ampulliform-like phialides and globose rough walled conidia resembling T. verruculosus. <i>Mycoscience</i> , 2015 , 56, 486-502	1.2	22
202	Toxigenic penicillia spoiling frozen chicken nuggets. Food Research International, 2015, 67, 219-222	7	18
201	Penicillium salamii, a new species occurring during seasoning of dry-cured meat. <i>International Journal of Food Microbiology</i> , 2015 , 193, 91-8	5.8	39
200	Name changes in medically important fungi and their implications for clinical practice. <i>Journal of Clinical Microbiology</i> , 2015 , 53, 1056-62	9.7	54
199	Reconstitution of Biosynthetic Machinery for the Synthesis of the Highly Elaborated Indole Diterpene Penitrem. <i>Angewandte Chemie</i> , 2015 , 127, 5840-5844	3.6	17
198	Review on Mycotoxin Issues in Ruminants: Occurrence in Forages, Effects of Mycotoxin Ingestion on Health Status and Animal Performance and Practical Strategies to Counteract Their Negative Effects. <i>Toxins</i> , 2015 , 7, 3057-111	4.9	169
197	Expanding the species and chemical diversity of Penicillium section Cinnamopurpurea. <i>PLoS ONE</i> , 2015 , 10, e0121987	3.7	22
196	A Taxonomic Revision of the Wallemia sebi Species Complex. <i>PLoS ONE</i> , 2015 , 10, e0125933	3.7	36
195	Penicillium excelsum sp. nov from the Brazil Nut Tree Ecosystem in the Amazon BasinQ <i>PLoS ONE</i> , 2015 , 10, e0143189	3.7	15
194	Production of cellulolytic enzymes from ascomycetes: Comparison of solid state and submerged fermentation. <i>Process Biochemistry</i> , 2015 , 50, 1327-1341	4.8	95
193	Titelbild: Reconstitution of Biosynthetic Machinery for the Synthesis of the Highly Elaborated Indole Diterpene Penitrem (Angew. Chem. 19/2015). <i>Angewandte Chemie</i> , 2015 , 127, 5621-5621	3.6	
192	"Analyses of black Aspergillus species of peanut and maize for ochratoxins and fumonisins," a comment on: J. Food Prot. 77(5):805-813 (2014). <i>Journal of Food Protection</i> , 2015 , 78, 6-8	2.5	4
191	Isolation of notoamide S and enantiomeric 6-epi-stephacidin A from the fungus Aspergillus amoenus: biogenetic implications. <i>Organic Letters</i> , 2015 , 17, 700-3	6.2	30

(2013-2015)

190	Extrolites of Aspergillus fumigatus and Other Pathogenic Species in Aspergillus Section Fumigati. <i>Frontiers in Microbiology</i> , 2015 , 6, 1485	5.7	53
189	Identification of a Classical Mutant in the Industrial Host Aspergillus niger by Systems Genetics: LaeA Is Required for Citric Acid Production and Regulates the Formation of Some Secondary Metabolites. <i>G3: Genes, Genomes, Genetics</i> , 2015 , 6, 193-204	3.2	42
188	Brazil nuts are subject to infection with B and G aflatoxin-producing fungus, Aspergillus pseudonomius. <i>International Journal of Food Microbiology</i> , 2014 , 186, 14-21	5.8	21
187	Aspergillus pragensis sp. nov. discovered during molecular reidentification of clinical isolates belonging to Aspergillus section Candidi. <i>Medical Mycology</i> , 2014 , 52, 565-76	3.9	31
186	Isolation, structural analyses and biological activity assays against chronic lymphocytic leukemia of two novel cytochalasins - sclerotionigrin A and B. <i>Molecules</i> , 2014 , 19, 9786-97	4.8	8
185	Accurate dereplication of bioactive secondary metabolites from marine-derived fungi by UHPLC-DAD-QTOFMS and a MS/HRMS library. <i>Marine Drugs</i> , 2014 , 12, 3681-705	6	99
184	Taxonomy, chemodiversity, and chemoconsistency of Aspergillus, Penicillium, and Talaromyces species. <i>Frontiers in Microbiology</i> , 2014 , 5, 773	5.7	48
183	Formation of sclerotia and production of indoloterpenes by Aspergillus niger and other species in section Nigri. <i>PLoS ONE</i> , 2014 , 9, e94857	3.7	46
182	Metabolomics for the Discovery of Novel Compounds 2014 , 73-77		
181	Polyphasic taxonomy of the genus Talaromyces. <i>Studies in Mycology</i> , 2014 , 78, 175-341	22.2	203
181	Polyphasic taxonomy of the genus Talaromyces. <i>Studies in Mycology</i> , 2014 , 78, 175-341 Dereplication guided discovery of secondary metabolites of mixed biosynthetic origin from Aspergillus aculeatus. <i>Molecules</i> , 2014 , 19, 10898-921	22.2	203
	Dereplication guided discovery of secondary metabolites of mixed biosynthetic origin from		
180	Dereplication guided discovery of secondary metabolites of mixed biosynthetic origin from Aspergillus aculeatus. <i>Molecules</i> , 2014 , 19, 10898-921 Aggressive dereplication using UHPLC-DAD-QTOF: screening extracts for up to 3000 fungal	4.8	31
180 179	Dereplication guided discovery of secondary metabolites of mixed biosynthetic origin from Aspergillus aculeatus. <i>Molecules</i> , 2014 , 19, 10898-921 Aggressive dereplication using UHPLC-DAD-QTOF: screening extracts for up to 3000 fungal secondary metabolites. <i>Analytical and Bioanalytical Chemistry</i> , 2014 , 406, 1933-43 The biodiversity of Aspergillus section Flavi in brazil nuts: from rainforest to consumer.	4.8	31
180 179 178	Dereplication guided discovery of secondary metabolites of mixed biosynthetic origin from Aspergillus aculeatus. <i>Molecules</i> , 2014 , 19, 10898-921 Aggressive dereplication using UHPLC-DAD-QTOF: screening extracts for up to 3000 fungal secondary metabolites. <i>Analytical and Bioanalytical Chemistry</i> , 2014 , 406, 1933-43 The biodiversity of Aspergillus section Flavi in brazil nuts: from rainforest to consumer. <i>International Journal of Food Microbiology</i> , 2013 , 160, 267-72 Two new Penicillium species Penicillium buchwaldii and Penicillium spathulatum, producing the	4.8 4.4 5.8	31 113 37
180 179 178	Dereplication guided discovery of secondary metabolites of mixed biosynthetic origin from Aspergillus aculeatus. <i>Molecules</i> , 2014 , 19, 10898-921 Aggressive dereplication using UHPLC-DAD-QTOF: screening extracts for up to 3000 fungal secondary metabolites. <i>Analytical and Bioanalytical Chemistry</i> , 2014 , 406, 1933-43 The biodiversity of Aspergillus section Flavi in brazil nuts: from rainforest to consumer. <i>International Journal of Food Microbiology</i> , 2013 , 160, 267-72 Two new Penicillium species Penicillium buchwaldii and Penicillium spathulatum, producing the anticancer compound asperphenamate. <i>FEMS Microbiology Letters</i> , 2013 , 339, 77-92 Aspergillus waksmanii sp. nov. and Aspergillus marvanovae sp. nov., two closely related species in	4.8 4.4 5.8 2.9	31 113 37 38
180 179 178 177	Dereplication guided discovery of secondary metabolites of mixed biosynthetic origin from Aspergillus aculeatus. <i>Molecules</i> , 2014 , 19, 10898-921 Aggressive dereplication using UHPLC-DAD-QTOF: screening extracts for up to 3000 fungal secondary metabolites. <i>Analytical and Bioanalytical Chemistry</i> , 2014 , 406, 1933-43 The biodiversity of Aspergillus section Flavi in brazil nuts: from rainforest to consumer. <i>International Journal of Food Microbiology</i> , 2013 , 160, 267-72 Two new Penicillium species Penicillium buchwaldii and Penicillium spathulatum, producing the anticancer compound asperphenamate. <i>FEMS Microbiology Letters</i> , 2013 , 339, 77-92 Aspergillus waksmanii sp. nov. and Aspergillus marvanovae sp. nov., two closely related species in section Fumigati. <i>International Journal of Systematic and Evolutionary Microbiology</i> , 2013 , 63, 783-789 Talaromyces atroroseus, a new species efficiently producing industrially relevant red pigments.	4.8 4.4 5.8 2.9	31 113 37 38 25

172	Anticancer and antifungal compounds from Aspergillus, Penicillium and other filamentous fungi. <i>Molecules</i> , 2013 , 18, 11338-76	4.8	73
171	Media and growth conditions for induction of secondary metabolite production. <i>Methods in Molecular Biology</i> , 2012 , 944, 47-58	1.4	32
170	Fungal origins of the bicyclo[2.2.2]diazaoctane ring system of prenylated indole alkaloids. <i>Journal of Natural Products</i> , 2012 , 75, 812-33	4.9	112
169	Patulin and secondary metabolite production by marine-derived Penicillium strains. <i>Fungal Biology</i> , 2012 , 116, 954-61	2.8	40
168	(2051) Proposal to conserve the name Talaromyces over Lasioderma (Ascomycota). <i>Taxon</i> , 2012 , 61, 46	1 48 2	3
167	Food fermentations: microorganisms with technological beneficial use. <i>International Journal of Food Microbiology</i> , 2012 , 154, 87-97	5.8	443
166	The effect of cocoa fermentation and weak organic acids on growth and ochratoxin A production by Aspergillus species. <i>International Journal of Food Microbiology</i> , 2012 , 155, 158-64	5.8	23
165	Aspergillus bertholletius sp. nov. from Brazil nuts. <i>PLoS ONE</i> , 2012 , 7, e42480	3.7	24
164	Atlantinone A, a Meroterpenoid Produced by Penicillium ribeum and Several Cheese Associated Penicillium Species. <i>Metabolites</i> , 2012 , 2, 214-20	5.6	10
163	Comparative Chemistry of Aspergillus oryzae (RIB40) and A. flavus (NRRL 3357). <i>Metabolites</i> , 2012 , 2, 39-56	5.6	58
162	Adaptive evolution of drug targets in producer and non-producer organisms. <i>Biochemical Journal</i> , 2012 , 441, 219-26	3.8	15
161	Penicillium araracuarense sp. nov., Penicillium elleniae sp. nov., Penicillium penarojense sp. nov., Penicillium vanderhammenii sp. nov. and Penicillium wotroi sp. nov., isolated from leaf litter. <i>International Journal of Systematic and Evolutionary Microbiology</i> , 2011 , 61, 1462-1475	2.2	40
160	Dereplication of microbial natural products by LC-DAD-TOFMS. <i>Journal of Natural Products</i> , 2011 , 74, 2338-48	4.9	192
159	Comparative genomics of citric-acid-producing Aspergillus niger ATCC 1015 versus enzyme-producing CBS 513.88. <i>Genome Research</i> , 2011 , 21, 885-97	9.7	266
158	Distribution of sterigmatocystin in filamentous fungi. Fungal Biology, 2011 , 115, 406-20	2.8	97
157	Aspergillus niger contains the cryptic phylogenetic species A. awamori. Fungal Biology, 2011, 115, 1138	- 520 8	121
156	The molecular and genetic basis of conidial pigmentation in Aspergillus niger. <i>Fungal Genetics and Biology</i> , 2011 , 48, 544-53	3.9	97
155	A genome-wide polyketide synthase deletion library uncovers novel genetic links to polyketides and meroterpenoids in Aspergillus nidulans. <i>FEMS Microbiology Letters</i> , 2011 , 321, 157-66	2.9	90

(2010-2011)

154	Hypersaline waters - a potential source of foodborne toxigenic aspergilli and penicillia. <i>FEMS Microbiology Ecology</i> , 2011 , 77, 186-99	4.3	43
153	A new class of IMP dehydrogenase with a role in self-resistance of mycophenolic acid producing fungi. <i>BMC Microbiology</i> , 2011 , 11, 202	4.5	38
152	The mycobiota of three dry-cured meat products from Slovenia. Food Microbiology, 2011, 28, 373-6	6	55
151	Salting of dry-cured meat - A potential cause of contamination with the ochratoxin A-producing species Penicillium nordicum. <i>Food Microbiology</i> , 2011 , 28, 1111-6	6	32
150	Mycobiota of cocoa: from farm to chocolate. <i>Food Microbiology</i> , 2011 , 28, 1499-504	6	52
149	High-yield production of hydrophobins RodA and RodB from Aspergillus fumigatus in Pichia pastoris. <i>Applied Microbiology and Biotechnology</i> , 2011 , 90, 1923-32	5.7	17
148	Associations between fungal species and water-damaged building materials. <i>Applied and Environmental Microbiology</i> , 2011 , 77, 4180-8	4.8	235
147	Hesseltins B I , novel meroterpenoids from a new Penicillium species. <i>Tetrahedron Letters</i> , 2011 , 52, 598-601	2	4
146	Aspergillus saccharolyticus sp. nov., a black Aspergillus species isolated in Denmark. <i>International Journal of Systematic and Evolutionary Microbiology</i> , 2011 , 61, 3077-3083	2.2	25
145	Fleming@penicillin producing strain is not Penicillium chrysogenum but P. rubens. <i>IMA Fungus</i> , 2011 , 2, 87-95	6.8	138
144	Submerged conidiation and product formation by Aspergillus niger at low specific growth rates are affected in aerial developmental mutants. <i>Applied and Environmental Microbiology</i> , 2011 , 77, 5270-7	4.8	24
143	Fumonisin and ochratoxin production in industrial Aspergillus niger strains. <i>PLoS ONE</i> , 2011 , 6, e23496	3.7	136
142	The amsterdam declaration on fungal nomenclature. <i>IMA Fungus</i> , 2011 , 2, 105-12	6.8	2 60
141	Mycotoxins on building materials 2011 , 245-275		7
140	Production of Fumonisin B2 and B4 by Aspergillus niger on grapes and raisins. <i>Journal of Agricultural and Food Chemistry</i> , 2010 , 58, 954-8	5.7	120
139	Isolation and NMR characterization of fumonisin B2 and a new fumonisin B6 from Aspergillus niger. <i>Journal of Agricultural and Food Chemistry</i> , 2010 , 58, 949-53	5.7	90
138	Sex in Penicillium series Roqueforti. <i>IMA Fungus</i> , 2010 , 1, 171-80	6.8	40
137	Polyphasic taxonomy of Aspergillus section Sparsi. <i>IMA Fungus</i> , 2010 , 1, 187-95	6.8	11

136	Aspergillus sect. Aeni sect. nov., a new section of the genus for A.karnatakaensis sp. nov. and some allied fungi. <i>IMA Fungus</i> , 2010 , 1, 197-205	6.8	20
135	Taxonomy of Penicillium citrinum and related species. Fungal Diversity, 2010, 44, 117-133	17.6	61
134	Hydrophobins from Aspergillus species cannot be clearly divided into two classes. <i>BMC Research Notes</i> , 2010 , 3, 344	2.3	55
133	Combining substrate specificity analysis with support vector classifiers reveals feruloyl esterase as a phylogenetically informative protein group. <i>PLoS ONE</i> , 2010 , 5, e12781	3.7	9
132	Genetic relationships among strains of the Aspergillus niger aggregate. <i>Brazilian Archives of Biology and Technology</i> , 2009 , 52, 241-248	1.8	10
131	Aspergillus alabamensis, a new clinically relevant species in the section Terrei. <i>Eukaryotic Cell</i> , 2009 , 8, 713-22		60
130	Secondary metabolites from Eurotium species, Aspergillus calidoustus and A. insuetus common in Canadian homes with a review of their chemistry and biological activities. <i>Mycological Research</i> , 2009 , 113, 480-90		76
129	Fingerprinting using extrolite profiles and physiological data shows sub-specific groupings of Penicillium crustosum strains. <i>Mycological Research</i> , 2009 , 113, 836-41		6
128	Proteome analysis of Aspergillus niger: lactate added in starch-containing medium can increase production of the mycotoxin fumonisin B2 by modifying acetyl-CoA metabolism. <i>BMC Microbiology</i> , 2009 , 9, 255	4.5	43
127	Review of secondary metabolites and mycotoxins from the Aspergillus niger group. <i>Analytical and Bioanalytical Chemistry</i> , 2009 , 395, 1225-42	4.4	212
126	Metabolomics of Aspergillus fumigatus. <i>Medical Mycology</i> , 2009 , 47 Suppl 1, S53-71	3.9	114
125	Identification of potentially safe promising fungal cell factories for the production of polyketide natural food colorants using chemotaxonomic rationale. <i>Microbial Cell Factories</i> , 2009 , 8, 24	6.4	104
124	Effect of competition on the production and activity of secondary metabolites in Aspergillus species. <i>Medical Mycology</i> , 2009 , 47 Suppl 1, S88-96	3.9	48
123	Effect of temperature and water activity on the production of fumonisins by Aspergillus niger and different Fusarium species. <i>BMC Microbiology</i> , 2009 , 9, 281	4.5	59
122	Mycobiota in the processing areas of two different meat products. <i>International Journal of Food Microbiology</i> , 2008 , 124, 58-64	5.8	67
121	Isolation, identification and toxigenic potential of ochratoxin A-producing Aspergillus species from coffee beans grown in two regions of Thailand. <i>International Journal of Food Microbiology</i> , 2008 , 128, 197-202	5.8	78
12 0	The use of secondary metabolite profiling in chemotaxonomy of filamentous fungi. <i>Mycological Research</i> , 2008 , 112, 231-40		233
119	Cold-Adapted Fungi as a Source for Valuable Metabolites 2008 , 381-387		6

118	Requirement of LaeA for secondary metabolism and sclerotial production in Aspergillus flavus. <i>Fungal Genetics and Biology</i> , 2008 , 45, 1422-9	3.9	157
117	Two novel aflatoxin-producing Aspergillus species from Argentinean peanuts. <i>International Journal of Systematic and Evolutionary Microbiology</i> , 2008 , 58, 725-35	2.2	191
116	Molecular Diversity of Aspergillus and Penicillium Species on Fruits and Vegetables 2008, 205-223		4
115	Four new species of Emericella from the Mediterranean region of Europe. <i>Mycologia</i> , 2008 , 100, 779-95	2.4	43
114	Aspergillus uvarum sp. nov., an uniseriate black Aspergillus species isolated from grapes in Europe. <i>International Journal of Systematic and Evolutionary Microbiology</i> , 2008 , 58, 1032-9	2.2	69
113	Two novel species of Aspergillus section Nigri from Thai coffee beans. <i>International Journal of Systematic and Evolutionary Microbiology</i> , 2008 , 58, 1727-34	2.2	42
112	New taxa of Neosartorya and Aspergillus in Aspergillus section Fumigati. <i>Antonie Van Leeuwenhoek</i> , 2008 , 93, 87-98	2.1	75
111	Determination of mycophenolic acid in meat products using mixed mode reversed phase-anion exchange clean-up and liquid chromatography-high-resolution mass spectrometry. <i>Journal of Chromatography A</i> , 2008 , 1205, 103-8	4.5	10
110	Fungi in Cold Ecosystems 2008, 137-156		29
109	Production of mycotoxins by Aspergillus lentulus and other medically important and closely related species in section Fumigati. <i>Medical Mycology</i> , 2007 , 45, 225-32	3.9	47
108	Solistatinol, a novel phenolic compactin analogue from Penicillium solitum. <i>Tetrahedron Letters</i> , 2007 , 48, 1261-1264	2	11
107	Genetic variation among Penicillium crustosum isolates from arctic and other ecological niches. <i>Microbial Ecology</i> , 2007 , 54, 298-305	4.4	20
106	Penicillium svalbardense, a new species from Arctic glacial ice. <i>Antonie Van Leeuwenhoek</i> , 2007 , 92, 43-5	1 .1	26
105	Identification of thermostable beta-xylosidase activities produced by Aspergillus brasiliensis and Aspergillus niger. <i>Biotechnology Letters</i> , 2007 , 29, 743-8	3	27
104	Aspergillus brasiliensis sp. nov., a biseriate black Aspergillus species with world-wide distribution. <i>International Journal of Systematic and Evolutionary Microbiology</i> , 2007 , 57, 1925-1932	2.2	97
103	The exo-metabolome in filamentous fungi. <i>Topics in Current Genetics</i> , 2007 , 235-252		10
102	A method for comparison of growth media in objective identification of Penicillium based on multi-spectral imaging. <i>Journal of Microbiological Methods</i> , 2007 , 69, 249-55	2.8	23
101	Fumonisin B2 production by Aspergillus niger. <i>Journal of Agricultural and Food Chemistry</i> , 2007 , 55, 9727	· '53/2	283

100	Penicillium mycobiota in arctic subglacial ice. <i>Microbial Ecology</i> , 2006 , 52, 207-16	4.4	71
99	Novel Neosartorya species isolated from soil in Korea. <i>International Journal of Systematic and Evolutionary Microbiology</i> , 2006 , 56, 477-486	2.2	170
98	Four psychrotolerant species with high chemical diversity consistently producing cycloaspeptide A, Penicillium jamesonlandense sp. nov., Penicillium ribium sp. nov., Penicillium soppii and Penicillium lanosum. <i>International Journal of Systematic and Evolutionary Microbiology</i> , 2006 , 56, 1427-1437	2.2	46
97	GliZ, a transcriptional regulator of gliotoxin biosynthesis, contributes to Aspergillus fumigatus virulence. <i>Infection and Immunity</i> , 2006 , 74, 6761-8	3.7	168
96	Prevention of ochratoxin A in cereals in Europe. <i>Advances in Experimental Medicine and Biology</i> , 2006 , 571, 317-42	3.6	6
95	Important mycotoxins and the fungi which produce them. <i>Advances in Experimental Medicine and Biology</i> , 2006 , 571, 3-31	3.6	112
94	Old and new concepts of species differentiation in Aspergillus. <i>Medical Mycology</i> , 2006 , 44, S133-S148	3.9	105
93	Production of Metabolites from thePenicillium roquefortiComplex. <i>Journal of Agricultural and Food Chemistry</i> , 2006 , 54, 5216-5216	5.7	2
92	Mycotoxins and other secondary metabolites produced in vitro by Penicillium paneum Frisvad and Penicillium roqueforti Thom isolated from baled grass silage in Ireland. <i>Journal of Agricultural and Food Chemistry</i> , 2006 , 54, 9268-76	5.7	87
91	Production of metabolites from the Penicillium roqueforti complex. <i>Journal of Agricultural and Food Chemistry</i> , 2006 , 54, 3756-63	5.7	80
90	Growth and mycotoxin production by Aspergillus fumigatus strains isolated from a saltern. <i>FEMS Microbiology Letters</i> , 2006 , 157, 9-12	2.9	27
89	epi-Aszonalenins A, B, and C from Aspergillus novofumigatus. <i>Tetrahedron Letters</i> , 2006 , 47, 6099-6102	2	29
88	Byssochlamys: significance of heat resistance and mycotoxin production. <i>Advances in Experimental Medicine and Biology</i> , 2006 , 571, 211-24	3.6	52
87	Recommendations concerning the chronic problem of misidentification of mycotoxigenic fungi associated with foods and feeds. <i>Advances in Experimental Medicine and Biology</i> , 2006 , 571, 33-46	3.6	29
86	Polyphasic taxonomy of Aspergillus fumigatus and related species. <i>Mycologia</i> , 2005 , 97, 1316-29	2.4	248
85	Communesins G and H, new alkaloids from the psychrotolerant fungus Penicillium rivulum. <i>Journal of Natural Products</i> , 2005 , 68, 258-61	4.9	102
84	Phenotypic taxonomy and metabolite profiling in microbial drug discovery. <i>Natural Product Reports</i> , 2005 , 22, 672-95	15.1	173
83	Discovery of new natural products by application of X-hitting, a novel algorithm for automated comparison of full UV spectra, combined with structural determination by NMR spectroscopy. <i>Journal of Natural Products</i> , 2005 , 68, 871-4	4.9	41

(2004-2005)

82	Polyphasic taxonomy of Aspergillus fumigatus and related species. <i>Mycologia</i> , 2005 , 97, 1316-1329	2.4	139
81	The genus Eurotium - members of indigenous fungal community in hypersaline waters of salterns. <i>FEMS Microbiology Ecology</i> , 2005 , 51, 155-66	4.3	86
80	Comparison of secondary metabolite production by Penicillium crustosum strains, isolated from Arctic and other various ecological niches. <i>FEMS Microbiology Ecology</i> , 2005 , 53, 51-60	4.3	45
79	Secondary metabolite and mycotoxin production by the Rhizopus microsporus group. <i>Journal of Agricultural and Food Chemistry</i> , 2005 , 53, 1833-40	5.7	62
78	Taxonomic comparison of three different groups of aflatoxin producers and a new efficient producer of aflatoxin B1, sterigmatocystin and 3-O-methylsterigmatocystin, Aspergillus rambellii sp. nov. <i>Systematic and Applied Microbiology</i> , 2005 , 28, 442-53	4.2	137
77	Exploring fungal biodiversity for the production of water-soluble pigments as potential natural food colorants. <i>Current Opinion in Biotechnology</i> , 2005 , 16, 231-8	11.4	182
76	Aspergillus vadensis, a new species of the group of black Aspergilli. <i>Antonie Van Leeuwenhoek</i> , 2005 , 87, 195-203	2.1	52
75	LaeA, a regulator of morphogenetic fungal virulence factors. <i>Eukaryotic Cell</i> , 2005 , 4, 1574-82		252
74	Halotolerant and Halophilic Fungi and Their Extrolite Production 2005 , 425-439		4
73	Aspergillus cyclooxygenase-like enzymes are associated with prostaglandin production and virulence. <i>Infection and Immunity</i> , 2005 , 73, 4548-59	3.7	98
72	A new black Aspergillus species, A. vadensis, is a promising host for homologous and heterologous protein production. <i>Applied and Environmental Microbiology</i> , 2004 , 70, 3954-9	4.8	127
71	Emericella venezuelensis, a new species with stellate ascospores producing sterigmatocystin and aflatoxin B1. <i>Systematic and Applied Microbiology</i> , 2004 , 27, 672-80	4.2	48
70	Penicillium persicinum, a new griseofulvin, chrysogine and roquefortine C producing species from Qinghai Province, China. <i>Antonie Van Leeuwenhoek</i> , 2004 , 86, 173-9	2.1	11
69	Screening genus Penicillium for producers of cellulolytic and xylanolytic enzymes. <i>Applied Biochemistry and Biotechnology</i> , 2004 , 113-116, 389-401	3.2	67
68	A new species from tropical soils, Eupenicillium tropicum. <i>Mycological Progress</i> , 2004 , 3, 13-18	1.9	5
67	Natural occurrence of fungi and fungal metabolites in moldy tomatoes. <i>Journal of Agricultural and Food Chemistry</i> , 2004 , 52, 7507-13	5.7	78
66	Hesseltin A, a novel antiviral metabolite from Penicillium hesseltinei. Organic Letters, 2004, 6, 3441-3	6.2	9
65	Penicillium expansum: consistent production of patulin, chaetoglobosins, and other secondary metabolites in culture and their natural occurrence in fruit products. <i>Journal of Agricultural and Food Chemistry</i> , 2004 , 52, 2421-8	5.7	209

64	Lightweight expanded clay aggregates (LECA), a new up-scaleable matrix for production of microfungal metabolites. <i>Journal of Antibiotics</i> , 2004 , 57, 29-36	3.7	19
63	Screening Genus Penicillium for Producers of Cellulolytic and Xylanolytic Enzymes 2004 , 389-401		1
62	Curvularia haloperoxidase: antimicrobial activity and potential application as a surface disinfectant. <i>Applied and Environmental Microbiology</i> , 2003 , 69, 4611-7	4.8	40
61	Spoilage fungi and their mycotoxins in commercially marketed chestnuts. <i>International Journal of Food Microbiology</i> , 2003 , 88, 69-77	5.8	78
60	New Penicillium species associated with bulbs and root vegetables. <i>Systematic and Applied Microbiology</i> , 2003 , 26, 631-9	4.2	23
59	Occurrence of the carcinogenic Bracken constituent ptaquiloside in fronds, topsoils and organic soil layers in Denmark. <i>Chemosphere</i> , 2003 , 51, 117-27	8.4	45
58	Characterization of Alternaria and Penicillium species from similar substrata based on growth at different temperature, pH and water activity. <i>Systematic and Applied Microbiology</i> , 2002 , 25, 162-72	4.2	18
57	Eupenicillium bovifimosum, a New Species from Dry Cow Manure in Wyoming. <i>Mycologia</i> , 2002 , 94, 240	2.4	7
56	Eupenicillium bovifimosum, a new species from dry cow manure in Wyoming. <i>Mycologia</i> , 2002 , 94, 240-2	2 4 64	12
55	Cell cytotoxicity and mycotoxin and secondary metabolite production by common penicillia on cheese agar. <i>Journal of Agricultural and Food Chemistry</i> , 2002 , 50, 6148-52	5.7	48
54	Systematics of Penicillium simplicissimum Based on rDNA Sequences, Morphology and Secondary Metabolites. <i>Mycologia</i> , 2001 , 93, 298	2.4	24
53	Combined molecular and biochemical approach identifies Aspergillus japonicus and Aspergillus aculeatus as two species. <i>Applied and Environmental Microbiology</i> , 2001 , 67, 521-7	4.8	66
52	Systematics of Penicillium simplicissimum based on rDNA sequences, morphology and secondary metabolites. <i>Mycologia</i> , 2001 , 93, 298-308	2.4	25
51	An amendment of Aspergillus section Candidi based on chemotaxonomical evidence. <i>Phytochemistry</i> , 2000 , 53, 581-6	4	30
50	Secondary metabolites characteristic of Penicillium citrinum, Penicillium steckii and related species. <i>Phytochemistry</i> , 2000 , 54, 301-9	4	90
49	UV-guided screening of benzodiazepine producing species in Penicillium. <i>Biochemical Systematics and Ecology</i> , 2000 , 28, 881-886	1.4	15
48	Chemical characterisation of cheese associated fungi. <i>Mycotoxin Research</i> , 2000 , 16 Suppl 1, 109-12	4	3
47	Direct identification of pure Penicillium species using image analysis. <i>Journal of Microbiological Methods</i> , 2000 , 41, 121-33	2.8	36

(1996-1999)

46	Fungal depside, guisinol, from a marine derived strain of Emericella unguis. <i>Phytochemistry</i> , 1999 , 50, 263-265	4	41	
45	Consistent production of penigequinolone A and B by Penicillium scabrosum. <i>Biochemical Systematics and Ecology</i> , 1999 , 27, 329-332	1.4	9	
44	Phylogenetic analysis of nucleotide sequences from the ITS region of terverticillate Penicillium species. <i>Mycological Research</i> , 1999 , 103, 873-881		99	
43	Circumdatin A, B, and C: Three New Benzodiazepine Alkaloids Isolated from a Culture of the Fungus Aspergillus ochraceus. <i>Journal of Organic Chemistry</i> , 1999 , 64, 1689-1692	4.2	89	
42	Full second-order chromatographic/spectrometric data matrices for automated sample identification and component analysis by non-data-reducing image analysis. <i>Analytical Chemistry</i> , 1999 , 71, 727-35	7.8	37	
41	Antibacterial activity of marine-derived fungi. <i>Mycopathologia</i> , 1998 , 143, 135-8	2.9	29	
40	Protection by fungal starters against growth and secondary metabolite production of fungal spoilers of cheese. <i>International Journal of Food Microbiology</i> , 1998 , 42, 91-9	5.8	42	
39	Arabenoic acid (verrucolone), a major chemical indicator of Penicillium verrucosum. <i>Biochemical Systematics and Ecology</i> , 1998 , 26, 463-465	1.4	10	
38	UV-Guided isolation of alantrypinone, a novel Penicillium alkaloid. <i>Journal of Natural Products</i> , 1998 , 61, 1154-7	4.9	70	
37	Mycotoxin production by Penicillium expansum on blackcurrant and cherry juice. <i>Food Additives and Contaminants</i> , 1998 , 15, 671-5		32	
36	Evolutionary Relationships in Aspergillus Section Fumigati Inferred from Partial b-Tubulin and Hydrophobin DNA Sequences. <i>Mycologia</i> , 1998 , 90, 831	2.4	74	
35	Evolutionary relationships in Aspergillus section Fumigati inferred from partial Eubulin and hydrophobin DNA sequences. <i>Mycologia</i> , 1998 , 90, 831-845	2.4	122	
34	Colony interaction and secondary metabolite production of cheese-related fungi in dual culture. <i>Journal of Food Protection</i> , 1998 , 61, 1023-9	2.5	13	
33	Insulicolide A: A New Nitrobenzoyloxy-Substituted Sesquiterpene from the Marine Fungus Aspergillus insulicola. <i>Journal of Natural Products</i> , 1997 , 60, 811-813	4.9	32	
32	Terverticillate penicillia studied by direct electrospray mass spectrometric profiling of crude extracts. I. Chemosystematics. <i>Biochemical Systematics and Ecology</i> , 1997 , 25, 51-64	T 1	27	
	exercees. 1. Chemosystematics. Diochemical Systematics and Leology, 1771, 23, 31-04	1.4	,	
31	Taxonomy of Penicillium chrysogenum and related xerophilic species, based on isozyme analysis. Mycological Research, 1997, 101, 617-624	1.4	30	
30	Taxonomy of Penicillium chrysogenum and related xerophilic species, based on isozyme analysis.	2.1		

28	Reclassification of the Penicillium roqueforti group into three species on the basis of molecular genetic and biochemical profiles. <i>Microbiology (United Kingdom)</i> , 1996 , 142 (Pt 3), 541-549	2.9	116
27	2D-PAGE examination of mRNA populations from Penicillium freii mutants deficient in xanthomegnin biosynthesis. <i>Microbiological Research</i> , 1996 , 151, 285-90	5.3	1
26	Use of correspondence analysis partial least squares on linear and unimodal data. <i>Journal of Chemometrics</i> , 1996 , 10, 677-685	1.6	2
25	Micellar electrokinetic capillary chromatography of fungal metabolites. Resolution optimized by experimental design. <i>Journal of Chromatography A</i> , 1996 , 721, 337-44	4.5	30
24	Comparison of different methods for collection of volatile chemical markers from fungi. <i>Journal of Microbiological Methods</i> , 1995 , 24, 135-144	2.8	44
23	Characterization of volatile metabolites from 47 Penicillium taxa. <i>Mycological Research</i> , 1995 , 99, 1153-	1166	163
22	Chemosystematics of Penicillium based on profiles of volatile metabolites. <i>Mycological Research</i> , 1995 , 99, 1167-1174		74
21	Correspondence, principal coordinate, and redundancy analysis used on mixed chemotaxonomical qualitative and quantitative data. <i>Chemometrics and Intelligent Laboratory Systems</i> , 1994 , 23, 213-229	3.8	8
20	A chemotaxonomic study of the terverticillate penicillia based on high performance liquid chromatography of secondary metabolities. <i>Mycological Research</i> , 1994 , 98, 1317-1328		59
19	Chemotaxonomy of Penicillium aurantiogriseum and related species. <i>Mycological Research</i> , 1994 , 98, 481-492		70
18	Penicillium tricolor, a new mould species from Canadian wheat. <i>Canadian Journal of Botany</i> , 1994 , 72, 933-939		12
17	Antifungal macrocyclic polylactones from Penicillium verruculosum. <i>Journal of Antibiotics</i> , 1993 , 46, 110)], 	27
16	New taxonomic approaches for identification of food-borne fungi. <i>International Biodeterioration and Biodegradation</i> , 1993 , 32, 99-116	4.8	2
15	Aurantiamine, a diketopiperazine from two varieties of Penicillium aurantiogriseum. <i>Phytochemistry</i> , 1992 , 31, 1613-1615	4	31
14	Chemometrics and chemotaxonomy: A comparison of multivariate statistical methods for the evaluation of binary fungal secondary metabolite data. <i>Chemometrics and Intelligent Laboratory Systems</i> , 1992 , 14, 253-269	3.8	22
13	Terverticillate Penicillia: Chemotaxonomy and Mycotoxin Production. <i>Mycologia</i> , 1989 , 81, 837-861	2.4	191
12	Terverticillate Penicillia: Chemotaxonomy and Mycotoxin Production. <i>Mycologia</i> , 1989 , 81, 837	2.4	145
11	The use of high-performance liquid chromatography and diode array detection in fungal chemotaxonomy based on profiles of secondary metabolites. <i>Botanical Journal of the Linnean Society</i> , 1989 , 99, 81-95	2.2	36

LIST OF PUBLICATIONS

10	Analysis and screening for mycotoxins and other secondary metabolites in fungal cultures by thin-layer chromatography and high-performance liquid chromatography. <i>Archives of Environmental Contamination and Toxicology</i> , 1989 , 18, 331-5	3.2	42
9	The connection between the Penicillia and Aspergilli and mycotoxins with special emphasis on misidentified isolates. <i>Archives of Environmental Contamination and Toxicology</i> , 1989 , 18, 452-67	3.2	103
8	Species specific profiles of secondary metabolites within the genusFusarium, obtained by reversed phase high performance liquid chromatography. <i>Mycotoxin Research</i> , 1987 , 3 Suppl 1, 21-4	4	
7	Standardized high-performance liquid chromatography of 182 mycotoxins and other fungal metabolites based on alkylphenone retention indices and UV-VIS spectra (diode array detection). <i>Journal of Chromatography A</i> , 1987 , 404, 195-214	4.5	344
6	High-performance liquid chromatographic determination of profiles of mycotoxins and other secondary metabolites. <i>Journal of Chromatography A</i> , 1987 , 392, 333-47	4.5	71
5	Taxonomic Approaches to Mycotoxin Identification (Taxonomic Indication of Mycotoxin Content in Foods) 1986 , 415-457		25
4	Classification of Asymmetric Penicillia Using Expressions of Differentiation 1986, 327-335		1
3	Secondary Metabolites as an Aid to Emericella Classification 1986 , 437-444		2
2	Physiological criteria and mycotoxin production as AIDS in identification of common asymmetric penicillia. <i>Applied and Environmental Microbiology</i> , 1981 , 41, 568-79	4.8	144
1	A survey of xerophilic Aspergillus from indoor environment, including descriptions of two new section Aspergillus species producing eurotium-like sexual states. <i>MycoKeys</i> ,19, 1-30	2.4	21