List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2669090/publications.pdf Version: 2024-02-01

409 papers	27,193 citations	4641 85 h-index	10424 139 g-index
431	431	431	11414
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	RNA VIRUS MUTATIONS AND FITNESS FOR SURVIVAL. Annual Review of Microbiology, 1997, 51, 151-178.	2.9	1,335
2	Viral Quasispecies Evolution. Microbiology and Molecular Biology Reviews, 2012, 76, 159-216.	2.9	811
3	Biological and biomedical implications of the co-evolution of pathogens and their hosts. Nature Genetics, 2002, 32, 569-577.	9.4	729
4	Nucleotide sequence heterogeneity of an RNA phage population. Cell, 1978, 13, 735-744.	13.5	570
5	The quasispecies (extremely heterogeneous) nature of viral RNA genome populations: biological relevance — a review. Gene, 1985, 40, 1-8.	1.0	484
6	Basic concepts in RNA virus evolution. FASEB Journal, 1996, 10, 859-864.	0.2	416
7	Lack of evidence for proofreading mechanisms associated with an RNA virus polymerase. Gene, 1992, 122, 281-288.	1.0	382
8	Rapid fitness losses in mammalian RNA virus clones due to Muller's ratchet Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 6015-6019.	3.3	353
9	Viral quasispecies. Virology, 2015, 479-480, 46-51.	1.1	319
10	Multiple genetic variants arise in the course of replication of foot-and-mouth disease virus in cell culture. Virology, 1983, 128, 310-318.	1.1	285
11	Exponential increases of RNA virus fitness during large population transmissions Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 5841-5844.	3.3	273
12	Evolution of foot-and-mouth disease virus. Virus Research, 2003, 91, 47-63.	1.1	273
13	The structure and antigenicity of a type C foot-and-mouth disease virus. Structure, 1994, 2, 123-139.	1.6	259
14	The proportion of revertant and mutant phage in a growing population, as a function of mutation and growth rate. Gene, 1976, 1, 27-32.	1.0	256
15	Mutation Frequencies at Defined Single Codon Sites in Vesicular Stomatitis Virus and Poliovirus Can Be Increased Only Slightly by Chemical Mutagenesis. Journal of Virology, 1990, 64, 3960-3962.	1.5	252
16	Evolution of Cell Recognition by Viruses. Science, 2001, 292, 1102-1105.	6.0	242
17	Pol gene quasispecies of human immunodeficiency virus: mutations associated with drug resistance in virus from patients undergoing no drug therapy. Journal of Virology, 1995, 69, 23-31.	1.5	240
18	Nucleotide sequence heterogeneity of the RNA from a natural population of foot-and-mouth-disease virus. Gene. 1980. 11. 333-346.	1.0	227

#	Article	IF	CITATIONS
19	Viruses as Quasispecies: Biological Implications. Current Topics in Microbiology and Immunology, 2006, 299, 51-82.	0.7	225
20	Genetic Lesions Associated with Muller's Ratchet in an RNA Virus. Journal of Molecular Biology, 1996, 264, 255-267.	2.0	224
21	Viral quasispecies. PLoS Genetics, 2019, 15, e1008271.	1.5	220
22	Response of Foot-and-Mouth Disease Virus to Increased Mutagenesis: Influence of Viral Load and Fitness in Loss of Infectivity. Journal of Virology, 2000, 74, 8316-8323.	1.5	219
23	A large-scale evaluation of peptide vaccines against foot-and-mouth disease: lack of solid protection in cattle and isolation of escape mutants. Journal of Virology, 1997, 71, 2606-2614.	1.5	209
24	A single amino acid substitution affects multiple overlapping epitopes in the major antigenic site of foot-and-mouth disease virus of serotype C. Journal of General Virology, 1990, 71, 629-637.	1.3	199
25	Structure of Foot-and-Mouth Disease Virus RNA-dependent RNA Polymerase and Its Complex with a Template-Primer RNA. Journal of Biological Chemistry, 2004, 279, 47212-47221.	1.6	198
26	Rapid selection of genetic and antigenic variants of foot-and-mouth disease virus during persistence in cattle. Journal of Virology, 1988, 62, 2041-2049.	1.5	184
27	Genetic bottlenecks and population passages cause profound fitness differences in RNA viruses. Journal of Virology, 1993, 67, 222-228.	1.5	181
28	Foot-and-mouth disease virus. Comparative Immunology, Microbiology and Infectious Diseases, 2002, 25, 297-308.	0.7	180
29	Memory in Viral Quasispecies. Journal of Virology, 2000, 74, 3543-3547.	1.5	174
30	Quasispecies Structure and Persistence of RNA Viruses. Emerging Infectious Diseases, 1998, 4, 521-527.	2.0	171
31	Structure of the major antigenic loop of foot-and-mouth disease virus complexed with a neutralizing antibody: direct involvement of the Arg-Gly-Asp motif in the interaction EMBO Journal, 1995, 14, 1690-1696.	3.5	170
32	Suppression of viral infectivity through lethal defection. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 4448-4452.	3.3	170
33	The red queen reigns in the kingdom of RNA viruses Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 4821-4824.	3.3	160
34	Drastic Fitness Loss in Human Immunodeficiency Virus Type 1 upon Serial Bottleneck Events. Journal of Virology, 1999, 73, 2745-2751.	1.5	160
35	Viruses at the Edge of Adaptation. Virology, 2000, 270, 251-253.	1.1	155
36	New observations on antigenic diversification of RNA viruses. Antigenic variation is not dependent on immune selection. Journal of General Virology, 1993, 74, 2039-2045.	1.3	151

#	Article	IF	CITATIONS
37	Multiple molecular pathways for fitness recovery of an RNA virus debilitated by operation of Muller's ratchet 1 1Edited by J. Karn. Journal of Molecular Biology, 1999, 285, 495-505.	2.0	151
38	Lethal mutagenesis of the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV). Virology, 2003, 308, 37-47.	1.1	151
39	Evolution of the capsid protein genes of foot-and-mouth disease virus: antigenic variation without accumulation of amino acid substitutions over six decades. Journal of Virology, 1992, 66, 3557-3565.	1.5	151
40	Cell Recognition by Foot-and-Mouth Disease Virus That Lacks the RGD Integrin-Binding Motif: Flexibility in Aphthovirus Receptor Usage. Journal of Virology, 2000, 74, 1641-1647.	1.5	150
41	Evolutionary Transition toward Defective RNAs That Are Infectious by Complementation. Journal of Virology, 2004, 78, 11678-11685.	1.5	150
42	Viral genetic variation: hepatitis B virus as a clinical example. Lancet, The, 1993, 341, 349-353.	6.3	149
43	Curing of foot-and-mouth disease virus from persistently infected cells by ribavirin involves enhanced mutagenesis. Virology, 2003, 311, 339-349.	1.1	149
44	Size of genetic bottlenecks leading to virus fitness loss is determined by mean initial population fitness. Journal of Virology, 1995, 69, 2869-2872.	1.5	148
45	The Two Species of the Foot-and-Mouth Disease Virus Leader Protein, Expressed individually, Exhibit the Same Activities. Virology, 1993, 194, 355-359.	1.1	147
46	Efficient Virus Extinction by Combinations of a Mutagen and Antiviral Inhibitors. Journal of Virology, 2001, 75, 9723-9730.	1.5	147
47	Coevolution of cells and viruses in a persistent infection of foot-and-mouth disease virus in cell culture. Journal of Virology, 1988, 62, 2050-2058.	1.5	146
48	Multiple Virulence Determinants of Foot-and-Mouth Disease Virus in Cell Culture. Journal of Virology, 1998, 72, 6362-6372.	1.5	141
49	Molecular indetermination in the transition to error catastrophe: Systematic elimination of lymphocytic choriomeningitis virus through mutagenesis does not correlate linearly with large increases in mutant spectrum complexity. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 12938-12943	3.3	139
50	Foot-and-Mouth Disease Virus Mutant with Decreased Sensitivity to Ribavirin: Implications for Error Catastrophe. Journal of Virology, 2007, 81, 2012-2024.	1.5	138
51	Origin and evolution of viruses. , 1998, 16, 13-21.		137
52	In vitro site-directed mutagenesis: Generation and properties of an infectious extracistronic mutant of bacteriophage Ql². Gene, 1976, 1, 3-25.	1.0	136
53	Subclonal components of consensus fitness in an RNA virus clone. Journal of Virology, 1994, 68, 4295-4301.	1.5	136
54	Implications of a quasispecies genome structure: effect of frequent, naturally occurring amino acid substitutions on the antigenicity of foot-and-mouth disease virus Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 5883-5887.	3.3	134

#	Article	IF	CITATIONS
55	Establishment of cell lines persistently infected with foot-and-mouth disease virus. Virology, 1985, 145, 24-35.	1.1	133
56	Lack of evolutionary stasis during alternating replication of an arbovirus in insect and mammalian cells. Journal of Molecular Biology, 1999, 287, 459-465.	2.0	132
57	Quasispecies Theory in Virology. Journal of Virology, 2002, 76, 463-465.	1.5	130
58	Mechanisms of viral emergence. Veterinary Research, 2010, 41, 38.	1.1	130
59	Effect of Alternating Passage on Adaptation of Sindbis Virus to Vertebrate and Invertebrate Cells. Journal of Virology, 2005, 79, 14253-14260.	1.5	129
60	Reactivity with monoclonal antibodies of viruses from an episode of foot-and-mouth disease. Virus Research, 1987, 8, 261-274.	1.1	127
61	A single nucleotide substitution in the internal ribosome entry site of foot-and-mouth disease virus leads to enhanced cap-independent translation in vivo. Journal of Virology, 1993, 67, 3748-3755.	1.5	125
62	The structure of a protein primer–polymerase complex in the initiation of genome replication. EMBO Journal, 2006, 25, 880-888.	3.5	124
63	Evolution subverting essentiality: Dispensability of the cell attachment Arg-Gly-Asp motif in multiply passaged foot-and-mouth disease virus. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 6798-6802.	3.3	123
64	RNA virus quasispecies: significance for viral disease and epidemiology. Infectious Agents and Disease, 1994, 3, 201-14.	1.2	121
65	Systematic Replacement of Amino Acid Residues within an Arg-Gly-Asp-containing Loop of Foot-and-Mouth Disease Virus and Effect on Cell Recognition. Journal of Biological Chemistry, 1996, 271, 12814-12819.	1.6	118
66	Distinct repertoire of antigenic variants of foot-and-mouth disease virus in the presence or absence of immune selection. Journal of Virology, 1993, 67, 6071-6079.	1.5	117
67	Fixation of mutations in the viral genome during an outbreak of foot-and-mouth disease: heterogeneity and rate variations. Gene, 1986, 50, 149-159.	1.0	116
68	Extensive antigenic heterogeneity of foot-and-mouth disease virus of serotype C. Virology, 1988, 167, 113-124.	1.1	116
69	Foot-and-Mouth Disease Virus Populations Are Quasispecies. Current Topics in Microbiology and Immunology, 1992, 176, 33-47.	0.7	115
70	Antigenic heterogeneity of a foot-and-mouth disease virus serotype in the field is mediated by very limited sequence variation at several antigenic sites. Journal of Virology, 1994, 68, 1407-1417.	1.5	115
71	RNA virus fitness. , 1997, 7, 87-96.		113
72	Sequential structures provide insights into the fidelity of RNA replication. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 9463-9468.	3.3	113

#	Article	IF	CITATIONS
73	Determinants of RNA-Dependent RNA Polymerase (In)fidelity Revealed by Kinetic Analysis of the Polymerase Encoded by a Foot-and-Mouth Disease Virus Mutant with Reduced Sensitivity to Ribavirin. Journal of Virology, 2008, 82, 12346-12355.	1.5	113
74	RNA virus evolution and the control of viral disease. , 1989, 33, 93-133.		112
75	Extreme fitness differences in mammalian and insect hosts after continuous replication of vesicular stomatitis virus in sandfly cells. Journal of Virology, 1995, 69, 6805-6809.	1.5	112
76	A Single Amino Acid Substitution in Nonstructural Protein 3A Can Mediate Adaptation of Foot-and-Mouth Disease Virus to the Guinea Pig. Journal of Virology, 2001, 75, 3977-3983.	1.5	110
77	Resistance of virus to extinction on bottleneck passages: Study of a decaying and fluctuating pattern of fitness loss. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 10830-10835.	3.3	109
78	Quasispecies and its impact on viral hepatitis. Virus Research, 2007, 127, 131-150.	1.1	109
79	Viral quasispecies complexity measures. Virology, 2016, 493, 227-237.	1.1	109
80	Unique amino acid substitutions in the capsid proteins of foot-and-mouth disease virus from a persistent infection in cell culture. Journal of Virology, 1990, 64, 5519-5528.	1.5	109
81	Genetic variability of Hong Kong (H3N2) influenza viruses: spontaneous mutations and their location in the viral genome. Gene, 1980, 11, 319-331.	1.0	107
82	Fitness alteration of foot-and-mouth disease virus mutants: measurement of adaptability of viral quasispecies. Journal of Virology, 1991, 65, 3954-3957.	1.5	106
83	Structure of the complex of an Fab fragment of a neutralizing antibody with foot-and-mouth disease virus: positioning of a highly mobile antigenic loop. EMBO Journal, 1997, 16, 1492-1500.	3.5	100
84	Role of a dipeptide insertion between codons 69 and 70 of HIV-1 reverse transcriptase in the mechanism of AZT resistance. EMBO Journal, 2000, 19, 5752-5761.	3.5	100
85	Preextinction Viral RNA Can Interfere with Infectivity. Journal of Virology, 2004, 78, 3319-3324.	1.5	100
86	Mutagenesis versus Inhibition in the Efficiency of Extinction of Foot-and-Mouth Disease Virus. Journal of Virology, 2003, 77, 7131-7138.	1.5	95
87	Viral Genome Segmentation Can Result from a Trade-Off between Genetic Content and Particle Stability. PLoS Genetics, 2011, 7, e1001344.	1.5	95
88	Quasispecies dynamics and RNA virus extinction. Virus Research, 2005, 107, 129-139.	1.1	93
89	Insights into RNA Virus Mutant Spectrum and Lethal Mutagenesis Events: Replicative Interference and Complementation by Multiple Point Mutants. Journal of Molecular Biology, 2007, 369, 985-1000.	2.0	93
90	Direct evaluation of the immunodominance of a major antigenic site of foot-and-mouth disease virus in a natural host. Virology, 1995, 206, 298-306.	1.1	89

#	Article	IF	CITATIONS
91	Response of Hepatitis C Virus to Long-Term Passage in the Presence of Alpha Interferon: Multiple Mutations and a Common Phenotype. Journal of Virology, 2013, 87, 7593-7607.	1.5	88
92	Exponential Fitness Gains of RNA Virus Populations Are Limited by Bottleneck Effects. Journal of Virology, 1999, 73, 1668-1671.	1.5	86
93	Virus mutation frequencies can be greatly underestimated by monoclonal antibody neutralization of virions. Journal of Virology, 1989, 63, 5030-5036.	1.5	85
94	Modifications of the 5' untranslated region of foot-and-mouth disease virus after prolonged persistence in cell culture. Virus Research, 1992, 26, 113-125.	1.1	84
95	High mutation rates, bottlenecks, and robustness of RNA viral quasispecies. Gene, 2005, 347, 273-282.	1.0	84
96	A Multi-Step Process of Viral Adaptation to a Mutagenic Nucleoside Analogue by Modulation of Transition Types Leads to Extinction-Escape. PLoS Pathogens, 2010, 6, e1001072.	2.1	83
97	Evidence for quasispecies distributions in the human hepatitis A virus genome. Virology, 2003, 315, 34-42.	1.1	82
98	Ribavirin Can Be Mutagenic for Arenaviruses. Journal of Virology, 2011, 85, 7246-7255.	1.5	81
99	Genetic and immunogenic variations among closely related isolates of foot-and-mouth disease virus. Gene, 1988, 62, 75-84.	1.0	78
100	Molecular intermediates of fitness gain of an RNA virus: characterization of a mutant spectrum by biological and molecular cloning. Journal of General Virology, 2001, 82, 1049-1060.	1.3	77
101	Negative effects of chemical mutagenesis on the adaptive behavior of vesicular stomatitis virus. Journal of Virology, 1997, 71, 3636-3640.	1.5	77
102	Many-trillionfold amplification of single RNA virus particles fails to overcome the Muller's ratchet effect. Journal of Virology, 1993, 67, 3620-3623.	1.5	75
103	Genomic nucleotide sequence of a foot-and-mouth disease virus clone and its persistent derivatives. Virus Research, 1999, 64, 161-171.	1.1	74
104	Duration and fitness dependence of quasispecies memory. Journal of Molecular Biology, 2002, 315, 285-296.	2.0	74
105	Increased Replicative Fitness Can Lead to Decreased Drug Sensitivity of Hepatitis C Virus. Journal of Virology, 2014, 88, 12098-12111.	1.5	74
106	High-Resolution Hepatitis C Virus Subtyping Using NS5B Deep Sequencing and Phylogeny, an Alternative to Current Methods. Journal of Clinical Microbiology, 2015, 53, 219-226.	1.8	74
107	Genetic Variability and Antigenic Diversity of Foot-and-Mouth Disease Virus. , 1990, , 233-266.		74
108	Resistance to extinction of low fitness virus subjected to plaque-to-plaque transfers: diversification by mutation clustering 1 1Edited by J. Karn. Journal of Molecular Biology, 2002, 315, 647-661.	2.0	73

#	Article	IF	CITATIONS
109	Viral quasispecies and the problem of vaccine-escape and drug-resistant mutants. , 1997, 48, 99-128.		72
110	Two mechanisms of antigenic diversification of foot-and-mouth disease virus. Virology, 1991, 184, 695-706.	1.1	71
111	Human immunodeficiency virus type 1 reverse transcriptase: role of Tyr115 in deoxynucleotide binding and misinsertion fidelity of DNA synthesis EMBO Journal, 1996, 15, 4434-4442.	3.5	71
112	Reproducible Nonlinear Population Dynamics and Critical Points During Replicative Competitions of RNA Virus Quasispecies. Journal of Molecular Biology, 1996, 264, 465-471.	2.0	70
113	Rapid Evolution of Viral RNA Genomes. Journal of Nutrition, 1997, 127, 958S-961S.	1.3	70
114	Induced Pocket to Accommodate the Cell Attachment Arg-Gly-Asp Motif in a Neutralizing Antibody Against Foot-and-Mouth-Disease Virus. Journal of Molecular Biology, 1996, 256, 364-376.	2.0	69
115	A Similar Pattern of Interaction for Different Antibodies with a Major Antigenic Site of Foot-and-Mouth Disease Virus: Implications for Intratypic Antigenic Variation. Journal of Virology, 1998, 72, 739-748.	1.5	69
116	Potential Benefits of Sequential Inhibitor-Mutagen Treatments of RNA Virus Infections. PLoS Pathogens, 2009, 5, e1000658.	2.1	68
117	Mutation Rates, Mutation Frequencies, and Proofreading-Repair Activities in RNA Virus Genetics. Viruses, 2021, 13, 1882.	1.5	66
118	Quasispecies as a matter of fact: Viruses and beyond. Virus Research, 2011, 162, 203-215.	1.1	65
119	Quasispecies and the development of new antiviral strategies. , 2003, 60, 133-158.		65
120	Mutagenesis-Induced, Large Fitness Variations with an Invariant Arenavirus Consensus Genomic Nucleotide Sequence. Journal of Virology, 2005, 79, 10451-10459.	1.5	64
121	Competition-colonization dynamics in an RNA virus. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 2108-2112.	3.3	64
122	Evolution of the influenza virus neuraminidase gene during drift of the N2 subtype. Virology, 1983, 130, 539-545.	1.1	63
123	Hidden Virulence Determinants in a Viral Quasispecies In Vivo. Journal of Virology, 2008, 82, 10465-10476.	1.5	63
124	Lethal Mutagenesis of Hepatitis C Virus Induced by Favipiravir. PLoS ONE, 2016, 11, e0164691.	1.1	63
125	Selection of Antigenic Variants of Foot-and-Mouth Disease Virus in the Absence of Antibodies, as Revealed by an in situ Assay. Journal of General Virology, 1989, 70, 3281-3289.	1.3	63
126	Rapid cell variation can determine the establishment of a persistent viral infection Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 3705-3709.	3.3	62

#	Article	IF	CITATIONS
127	Extinction of West Nile Virus by Favipiravir through Lethal Mutagenesis. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	61
128	Characterization of the Reverse Transcriptase of a Human Immunodeficiency Virus Type 1 Group O Isolate. Virology, 1997, 236, 364-373.	1.1	60
129	Extinction of Hepatitis C Virus by Ribavirin in Hepatoma Cells Involves Lethal Mutagenesis. PLoS ONE, 2013, 8, e71039.	1.1	60
130	Evolution of the nucleotide sequence of influenza virus RNA segment 7 during drift of the H3N2 subtype. Gene, 1983, 23, 233-239.	1.0	59
131	Gene encoding capsid protein VP1 of foot-and-mouth disease virus: a quasispecies model of molecular evolution Proceedings of the National Academy of Sciences of the United States of America, 1988, 85, 6811-6815.	3.3	59
132	Ribavirin cures cells of a persistent infection with foot-and-mouth disease virus in vitro. Journal of Virology, 1987, 61, 233-235.	1.5	59
133	Evidence for Positive Selection in the Capsid Protein-Coding Region of the Foot-and-Mouth Disease Virus (FMDV) Subjected to Experimental Passage Regimens. Molecular Biology and Evolution, 2001, 18, 10-21.	3.5	58
134	Modeling Viral Genome Fitness Evolution Associated with Serial Bottleneck Events: Evidence of Stationary States of Fitness. Journal of Virology, 2002, 76, 8675-8681.	1.5	58
135	Evolution of Cell Recognition by Viruses: A Source of Biological Novelty with Medical Implications. Advances in Virus Research, 2003, 62, 19-111.	0.9	58
136	Extracellular vesicles: Vehicles of en bloc viral transmission. Virus Research, 2019, 265, 143-149.	1.1	58
137	Quasispecies and the implications for virus persistence and escape. Clinical and Diagnostic Virology, 1998, 10, 97-101.	1.8	57
138	Pathways to extinction: beyond the error threshold. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 1943-1952.	1.8	57
139	Red Queen Dynamics, Competition and Critical Points in a Model of RNA Virus Quasispecies. Journal of Theoretical Biology, 1999, 198, 47-59.	0.8	56
140	Structural insights into replication initiation and elongation processes by the FMDV RNA-dependent RNA polymerase. Current Opinion in Structural Biology, 2009, 19, 752-758.	2.6	56
141	Inference with viral quasispecies diversity indices: clonal and NGS approaches. Bioinformatics, 2014, 30, 1104-1111.	1.8	56
142	Rapid Selection in Modified BHK-21 Cells of a Foot-and-Mouth Disease Virus Variant Showing Alterations in Cell Tropism. Journal of Virology, 1998, 72, 10171-10179.	1.5	56
143	Arenavirus genetic diversity and its biological implications. Infection, Genetics and Evolution, 2009, 9, 417-429.	1.0	55
144	Footâ€andâ€mouth disease in Europe. EMBO Reports, 2001, 2, 459-461.	2.0	54

#	Article	IF	CITATIONS
145	Ultra-Deep Pyrosequencing (UDPS) Data Treatment to Study Amplicon HCV Minor Variants. PLoS ONE, 2013, 8, e83361.	1.1	54
146	Structure of the major antigenic loop of foot-and-mouth disease virus complexed with a neutralizing antibody: direct involvement of the Arg-Gly-Asp motif in the interaction. EMBO Journal, 1995, 14, 1690-6.	3.5	54
147	Flexibility of the Major Antigenic Loop of Foot-and-Mouth Disease Virus Bound to a Fab Fragment of a Neutralising Antibody: Structure and Neutralisation. Virology, 1999, 255, 260-268.	1.1	53
148	Evolution of Fitness in Experimental Populations of Vesicular Stomatitis Virus. Genetics, 1996, 142, 673-679.	1.2	53
149	VP1 of serotype C foot-and-mouth disease viruses: long-term conservation of sequences. Journal of Virology, 1988, 62, 1469-1473.	1.5	53
150	Extensive cell heterogeneity during persistent infection with foot-and-mouth disease virus Journal of Virology, 1989, 63, 59-63.	1.5	53
151	Identification of an essential region for internal initiation of translation in the aphthovirus internal ribosome entry site and implications for viral evolution. Journal of Virology, 1996, 70, 992-998.	1.5	53
152	Memory in Retroviral Quasispecies: Experimental Evidence and Theoretical Model for Human Immunodeficiency Virus. Journal of Molecular Biology, 2003, 331, 213-229.	2.0	52
153	Molecular cloning of cDNA from foot-and-mouth disease virus C1-Santa Pau (C-S8). Sequence of protein-VP1-coding segment. Gene, 1983, 23, 185-194.	1.0	51
154	Mispair extension fidelity of human immunodeficiency virus type 1 reverse transcriptases with amino acid substitutions affecting Tyr115. Nucleic Acids Research, 1997, 25, 1383-1389.	6.5	51
155	Quasispecies and virus. European Biophysics Journal, 2018, 47, 443-457.	1.2	51
156	Dilute passage promotes expression of genetic and phenotypic variants of human immunodeficiency virus type 1 in cell culture. Journal of Virology, 1993, 67, 2938-2943.	1.5	51
157	Minority report: hidden memory genomes in HIV-1 quasispecies and possible clinical implications. AIDS Reviews, 2008, 10, 93-109.	0.5	51
158	Structure of Foot-and-Mouth Disease Virus Mutant Polymerases with Reduced Sensitivity to Ribavirin. Journal of Virology, 2010, 84, 6188-6199.	1.5	50
159	Unusual Distribution of Mutations Associated with Serial Bottleneck Passages of Human Immunodeficiency Virus Type 1. Journal of Virology, 2000, 74, 9546-9552.	1.5	49
160	Ultra-Deep Pyrosequencing Detects Conserved Genomic Sites and Quantifies Linkage of Drug-Resistant Amino Acid Changes in the Hepatitis B Virus Genome. PLoS ONE, 2012, 7, e37874.	1.1	49
161	Genetic variation and quasi-species. Current Opinion in Genetics and Development, 1992, 2, 61-63.	1.5	48
162	The impact of quasispecies dynamics on the use of therapeutics. Trends in Microbiology, 2012, 20, 595-603.	3.5	48

#	Article	IF	CITATIONS
163	Long-Term, Large-Population Passage of Aphthovirus Can Generate and Amplify Defective Noninterfering Particles Deleted in the Leader Protease Gene. Virology, 1996, 223, 10-18.	1.1	47
164	Evidence of the Coevolution of Antigenicity and Host Cell Tropism of Foot-and-Mouth Disease Virus In Vivo. Journal of Virology, 2003, 77, 1219-1226.	1.5	47
165	Viral Quasispecies and Fitness Variations. , 1999, , 141-161.		46
166	Molecular Basis for a Lack of Correlation between Viral Fitness and Cell Killing Capacity. PLoS Pathogens, 2007, 3, e53.	2.1	46
167	Complications of RNA Heterogeneity for the Engineering of Virus Vaccines and Antiviral Agents. , 1992, 14, 13-31.		46
168	Fixation of mutations at the VP1 gene of foot-and-mouth disease virus. Can quasispecies define a transient molecular clock?. Gene, 1991, 103, 147-153.	1.0	44
169	Foot-and-Mouth Disease Virus Lacking the VP1 G-H Loop: The Mutant Spectrum Uncovers Interactions among Antigenic Sites for Fitness Gain. Virology, 2001, 288, 192-202.	1.1	44
170	Multidrug-resistant HIV-1 Reverse Transcriptase: Involvement of Ribonucleotide-dependent Phosphorolysis in Cross-resistance to Nucleoside Analogue Inhibitors. Journal of Molecular Biology, 2002, 323, 181-197.	2.0	44
171	Invariant aphthovirus consensus nucleotide sequence in the transition to error catastrophe. Infection, Genetics and Evolution, 2005, 5, 366-374.	1.0	44
172	Resistance of Hepatitis C Virus to Inhibitors: Complexity and Clinical Implications. Viruses, 2015, 7, 5746-5766.	1.5	44
173	High Error Rates, Population Equilibrium, and Evolution of RNA Replication Systems. , 2018, , 3-36.		44
174	Large deletions in the 5′-untranslated region of foot-and-mouth disease virus of serotype C. Virus Research, 1995, 35, 155-167.	1.1	43
175	Emergence and selection of RNA virus variants: memory and extinction. Virus Research, 2001, 82, 39-44.	1.1	43
176	Dynamics of Mutation and Recombination in a Replicating Population of Complementing, Defective Viral Genomes. Journal of Molecular Biology, 2006, 360, 558-572.	2.0	43
177	Sequence of the viral replicase gene from foot-and-mouth disease virus C1-Santa Pau (C-S8). Gene, 1985, 35, 55-61.	1.0	42
178	Mutant Viral Polymerase in the Transition of Virus to Error Catastrophe Identifies a Critical Site for RNA Binding. Journal of Molecular Biology, 2005, 353, 1021-1032.	2.0	42
179	Guinea Pig-Adapted Foot-and-Mouth Disease Virus with Altered Receptor Recognition Can Productively Infect a Natural Host. Journal of Virology, 2007, 81, 8497-8506.	1.5	42
180	Studies on antigenic variability of C strains of footâ€andâ€mouth disease virus by means of synthetic peptides and monoclonal antibodies. International Journal of Peptide and Protein Research, 1992, 39, 41-47.	0.1	42

#	Article	IF	CITATIONS
181	Barrier-Independent, Fitness-Associated Differences in Sofosbuvir Efficacy against Hepatitis C Virus. Antimicrobial Agents and Chemotherapy, 2016, 60, 3786-3793.	1.4	42
182	Internal Disequilibria and Phenotypic Diversification during Replication of Hepatitis C Virus in a Noncoevolving Cellular Environment. Journal of Virology, 2017, 91, .	1.5	42
183	Human immunodeficiency virus type 1 reverse transcriptase: role of Tyr115 in deoxynucleotide binding and misinsertion fidelity of DNA synthesis. EMBO Journal, 1996, 15, 4434-42.	3.5	42
184	Contingent Neutrality in Competing Viral Populations. Journal of Virology, 2001, 75, 7315-7320.	1.5	41
185	Combination of a mutagenic agent with a reverse transcriptase inhibitor results in systematic inhibition of HIV-1 infection. Virology, 2005, 338, 1-8.	1.1	41
186	Repeated Bottleneck Transfers Can Lead to Non-cytocidal Forms of a Cytopathic Virus: Implications for Viral Extinction. Journal of Molecular Biology, 2008, 376, 367-379.	2.0	41
187	Molecular Characterization of a Dual Inhibitory and Mutagenic Activity of 5-Fluorouridine Triphosphate on Viral RNA Synthesis. Implications for Lethal Mutagenesis. Journal of Molecular Biology, 2008, 382, 652-666.	2.0	41
188	Antiviral Strategies Based on Lethal Mutagenesis and Error Threshold. Current Topics in Microbiology and Immunology, 2015, 392, 323-339.	0.7	41
189	An RNA virus can adapt to the multiplicity of infection Journal of General Virology, 1998, 79, 2971-2980.	1.3	41
190	Insertions in the Reverse Transcriptase Increase both Drug Resistance and Viral Fitness in a Human Immunodeficiency Virus Type 1 Isolate Harboring the Multi-Nucleoside Reverse Transcriptase Inhibitor Resistance 69 Insertion Complex Mutation. Journal of Virology, 2002, 76, 10546-10552.	1.5	40
191	Coxsackieviruses and Quasispecies Theory: Evolution of Enteroviruses. , 2008, 323, 3-32.		40
192	Deep-sequencing reveals broad subtype-specific HCV resistance mutations associated with treatment failure. Antiviral Research, 2020, 174, 104694.	1.9	39
193	Antigenic properties and population stability of a foot-and-mouth disease virus with an altered Arg-Gly-Asp receptor-recognition motif. Journal of General Virology, 1999, 80, 1899-1909.	1.3	39
194	Synchronous Loss of Quasispecies Memory in Parallel Viral Lineages: A Deterministic Feature of Viral Quasispecies. Journal of Molecular Biology, 2003, 333, 553-563.	2.0	38
195	Tempo and mode of inhibitor–mutagen antiviral therapies: A multidisciplinary approach. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16008-16013.	3.3	38
196	Molecular evolution of aphthoviruses. Virus Genes, 1995, 11, 197-207.	0.7	37
197	Antibodies Raised in a Natural Host and Monoclonal Antibodies Recognize Similar Antigenic Features of Foot-and-Mouth Disease Virus. Virology, 1995, 210, 120-127.	1.1	37
198	A multiply substituted G–H loop from foot-and-mouth disease virus in complex with a neutralizing antibody: a role for water molecules. Journal of General Virology, 2000, 81, 1495-1505.	1.3	37

#	Article	IF	CITATIONS
199	Fitness Increase of Memory Genomes in a Viral Quasispecies. Journal of Molecular Biology, 2004, 339, 405-412.	2.0	37
200	EVOLUTIONARY DYNAMICS OF FITNESS RECOVERY FROM THE DEBILITATING EFFECTS OF MULLER'S RATCHET. Evolution; International Journal of Organic Evolution, 1998, 52, 309-314.	1.1	37
201	Evolution of a persistent aphthovirus in cytolytic infections: partial reversion of phenotypic traits accompanied by genetic diversification. Journal of Virology, 1996, 70, 6617-6624.	1.5	37
202	A guanosine to adenosine transition in the 3′ terminal extracistronic region of bacteriophage Qβ RNA leading to loss of infectivity. Journal of Molecular Biology, 1977, 112, 235-252.	2.0	36
203	No evidence of selection for mutational robustness during lethal mutagenesis of lymphocytic choriomeningitis virus. Virology, 2008, 378, 185-192.	1.1	36
204	Counteracting Quasispecies Adaptability: Extinction of a Ribavirin-Resistant Virus Mutant by an Alternative Mutagenic Treatment. PLoS ONE, 2009, 4, e5554.	1.1	36
205	Viral fitness: history and relevance for viral pathogenesis and antiviral interventions. Pathogens and Disease, 2019, 77, .	0.8	36
206	Non-additive effects of multiple amino acid substitutions on antigen-antibody recognition. European Journal of Immunology, 1992, 22, 1385-1389.	1.6	35
207	Point Mutant Frequencies in the <i>pol</i> Gene of Human Immunodeficiency Virus Type 1 Are Two- to Threefold Lower Than Those of <i>env</i> . AIDS Research and Human Retroviruses, 1996, 12, 1117-1128.	0.5	35
208	Foot-and-Mouth Disease Virus Evolution: Exploring Pathways Towards Virus Extinction. Current Topics in Microbiology and Immunology, 2005, 288, 149-173.	0.7	35
209	Minority memory genomes can influence the evolution of HIV-1 quasispecies in vivo. Gene, 2006, 384, 129-138.	1.0	35
210	Historical Perspective on the Discovery of the Quasispecies Concept. Annual Review of Virology, 2021, 8, 51-72.	3.0	35
211	Antibody and host cell recognition of foot-and-mouth disease virus (serotype C) cleaved at the Arg-Gly-Asp (RGD) motif: a structural interpretation. Journal of General Virology, 1996, 77, 257-264.	1.3	34
212	Dynamics of dominance of a dipeptide insertion in reverse transcriptase of HIV-1 from patients subjected to prolonged therapy. Virus Research, 2000, 66, 13-26.	1.1	34
213	Virus population dynamics, fitness variations and the control of viral disease: an update. , 2001, 57, 77-115.		34
214	Extensive antigenic diversification of foot-and-mouth disease virus by amino acid substitutions outside the major antigenic site. Journal of General Virology, 1992, 73, 3307-3311.	1.3	33
215	Fitness Distributions in Exponentially Growing Asexual Populations. Physical Review Letters, 2003, 90, 188102.	2.9	33
216	Beneficial Effects of Population Bottlenecks in an RNA Virus Evolving at Increased Error Rate. Journal of Molecular Biology, 2008, 384, 1120-1129.	2.0	33

#	Article	IF	CITATIONS
217	Generation of a subtype-specific neutralization epitope in foot-and-mouth disease virus of a different subtype. Journal of General Virology, 1992, 73, 213-216.	1.3	32
218	Use of substituted and tandem-repeated peptides to probe the relevance of the highly conserved RGD tripeptide in the immune response against foot-and-mouth disease virus. FEBS Letters, 1993, 330, 253-259.	1.3	32
219	Rapid viral quasispecies evolution: implications for vaccine and drug strategies. Trends in Molecular Medicine, 1995, 1, 248-253.	2.6	32
220	Favipiravir can evoke lethal mutagenesis and extinction of foot-and-mouth disease virus. Virus Research, 2017, 233, 105-112.	1.1	32
221	Topology of evolving, mutagenized viral populations: quasispecies expansion, compression, and operation of negative selection. BMC Evolutionary Biology, 2008, 8, 207.	3.2	31
222	Evidence of Muller's ratchet in herpes simplex virus type 1. Journal of General Virology, 2013, 94, 366-375.	1.3	31
223	Expansion of host-cell tropism of foot-and-mouth disease virus despite replication in a constant environment. Journal of General Virology, 2004, 85, 2289-2297.	1.3	30
224	From Quasispecies Theory to Viral Quasispecies: How Complexity has Permeated Virology. Mathematical Modelling of Natural Phenomena, 2012, 7, 105-122.	0.9	30
225	Resistance of high fitness hepatitis C virus to lethal mutagenesis. Virology, 2018, 523, 100-109.	1.1	30
226	The increasing impact of lethal mutagenesis of viruses. Future Medicinal Chemistry, 2019, 11, 1645-1657.	1.1	30
227	Resistance to foot-and-mouth disease virus mediated by trans-acting cellular products. Journal of Virology, 1989, 63, 2385-2387.	1.5	30
228	Oriented synthesis and cloning of influenza virus nucleoprotein cDNA that leads to its expression in mammalian cells. Virus Research, 1985, 4, 69-82.	1.1	29
229	Native-like cyclic peptide models of a viral antigenic site: finding a balance between rigidity and flexibility. , 2000, 13, 5-13.		29
230	Biological Effect of Muller's Ratchet: Distant Capsid Site Can Affect Picornavirus Protein Processing. Journal of Virology, 2009, 83, 6748-6756.	1.5	29
231	Lethal mutagenesis of viruses. Current Opinion in Virology, 2011, 1, 419-422.	2.6	29
232	Exploration of sequence space as the basis of viral RNA genome segmentation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6678-6683.	3.3	29
233	Involvement of a joker mutation in a polymerase-independent lethal mutagenesis escape mechanism. Virology, 2016, 494, 257-266.	1.1	29
234	Pipeline for specific subtype amplification and drug resistance detection in hepatitis C virus. BMC Infectious Diseases, 2018, 18, 446.	1.3	29

#	Article	IF	CITATIONS
235	Large-population passages of vesicular stomatitis virus in interferon-treated cells select variants of only limited resistance. Journal of Virology, 1996, 70, 6414-6417.	1.5	29
236	Monitoring Sequence Space as a Test for the Target of Selection in Viruses. Journal of Molecular Biology, 2005, 345, 451-459.	2.0	28
237	5-fluorouracil in lethal mutagenesis of foot-and-mouth disease virus. Future Medicinal Chemistry, 2009, 1, 529-539.	1.1	28
238	Arenaviruses and Lethal Mutagenesis. Prospects for New Ribavirin-based Interventions. Viruses, 2012, 4, 2786-2805.	1.5	28
239	Differential restrictions on antigenic variation among antigenic sites of foot-and-mouth disease virus in the absence of antibody selection Journal of General Virology, 1997, 78, 601-609.	1.3	28
240	Unprocessed foot-and-mouth disease virus capsid precursor displays discontinuous epitopes involved in viral neutralization. Journal of Virology, 1994, 68, 4557-4564.	1.5	28
241	Second-Site Reversion of a Human Immunodeficiency Virus Type 1 Reverse Transcriptase Mutant That Restores Enzyme Function and Replication Capacity. Journal of Virology, 1999, 73, 6293-6298.	1.5	28
242	Initial Fitness Recovery of HIV-1 Is Associated with Quasispecies Heterogeneity and Can Occur without Modifications in the Consensus Sequence. PLoS ONE, 2010, 5, e10319.	1.1	28
243	In vitro synthesis of full-length influenza virus complementary RNA EMBO Journal, 1985, 4, 243-247.	3.5	27
244	3D gene of foot-and-mouth disease virus. Journal of Molecular Biology, 1988, 204, 771-776.	2.0	27
245	Foot-and-mouth disease virus strains isolated from persistently infected cell cultures are attenuated for mice and cattle. Virus Research, 1990, 18, 3-7.	1.1	27
246	Emerging foot-and-mouth disease virus variants with antigenically critical amino acid substitutions predicted by model studies using reference viruses. Vaccine, 1996, 14, 97-102.	1.7	27
247	RNA virus evolution, population dynamics, and nutritional status. Biological Trace Element Research, 1997, 56, 23-30.	1.9	27
248	LTR and tat variability of HIV-1 isolates from patients with divergent rates of disease progression. Virus Research, 1998, 57, 11-20.	1.1	27
249	Mutational analysis of Phe160 within the "palm―subdomain of human immunodeficiency virus type 1 reverse transcriptase 1 1Edited by J. Karn. Journal of Molecular Biology, 1999, 290, 615-625.	2.0	27
250	Viral Quasispecies: Dynamics, Interactions, and Pathogenesis**Dedicated to Manfred Eigen on the occasion of his 80th birthday, for the insights that his pioneer studies have represented for virology , 2008, , 87-118.		27
251	What Is a Quasispecies? Historical Origins and Current Scope. Current Topics in Microbiology and Immunology, 2015, 392, 1-22.	0.7	27
252	Efficient neutralization of foot-and-mouth disease virus by monovalent antibody binding. Journal of Virology, 1997, 71, 9813-9816.	1.5	27

#	Article	IF	CITATIONS
253	Biochemical and structural studies with neutralizing antibodies raised against foot-and-mouth disease virus. Virus Research, 1999, 62, 169-175.	1.1	26
254	Future prospects for the treatment of rapidly evolving viral pathogens: insights from evolutionary biology. Expert Opinion on Biological Therapy, 2008, 8, 1455-1460.	1.4	26
255	Mutant spectra in virus behavior. Future Virology, 2010, 5, 679-698.	0.9	26
256	Lethal Mutagenesis of Foot-and-Mouth Disease Virus Involves Shifts in Sequence Space. Journal of Virology, 2011, 85, 12227-12240.	1.5	26
257	Clonality and intracellular polyploidy in virus evolution and pathogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8887-8892.	3.3	26
258	Baseline hepatitis C virus resistance-associated substitutions present at frequencies lower than 15% may be clinically significant. Infection and Drug Resistance, 2018, Volume 11, 2207-2210.	1.1	26
259	A segmented form of foot-and-mouth disease virus interferes with standard virus: A link between interference and competitive fitness. Virology, 2005, 335, 155-164.	1.1	25
260	Persistence of foot-and-mouth disease virus in cell culture revisited: implications for contingency in evolution. Journal of General Virology, 2008, 89, 232-244.	1.3	25
261	Influence of Mutagenesis and Viral Load on the Sustained Low-Level Replication of an RNA Virus. Journal of Molecular Biology, 2011, 407, 60-78.	2.0	25
262	Lethal Mutagenesis of Rift Valley Fever Virus Induced by Favipiravir. Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	25
263	Contribution of LCMV Towards Deciphering Biology of Quasispecies In Vivo. Current Topics in Microbiology and Immunology, 2002, 263, 197-220.	0.7	25
264	Evolutionary Dynamics of Fitness Recovery from the Debilitating Effects of Muller's Ratchet. Evolution; International Journal of Organic Evolution, 1998, 52, 309.	1.1	24
265	Molecular Characterization of Human Immunodeficiency Virus Type 1 Isolates from Venezuela. AIDS Research and Human Retroviruses, 1995, 11, 605-616.	0.5	23
266	Deep sequencing in the management of hepatitis virus infections. Virus Research, 2017, 239, 115-125.	1.1	23
267	Plasmid vectors based on Tn10 DNA: Gene expression regulated by tetracycline. Plasmid, 1984, 12, 103-110.	0.4	22
268	Antigenically Profound Amino Acid Substitutions Occur during Large Population Passages of Foot-and-Mouth Disease Virus. Virology, 1996, 225, 400-405.	1.1	22
269	Adaptability costs in immune escape variants of vesicular stomatitis virus. Virus Research, 2005, 107, 27-34.	1.1	22
270	An interfering activity against lymphocytic choriomeningitis virus replication associated with enhanced mutagenesis. Journal of General Virology, 2010, 91, 990-1003.	1.3	22

#	Article	IF	CITATIONS
271	Molecular basis of interferon resistance in hepatitis C virus. Current Opinion in Virology, 2014, 8, 38-44.	2.6	22
272	Multifunctionality of a Picornavirus Polymerase Domain: Nuclear Localization Signal and Nucleotide Recognition. Journal of Virology, 2015, 89, 6848-6859.	1.5	22
273	Mutagenesis-Mediated Virus Extinction: Virus-Dependent Effect of Viral Load on Sensitivity to Lethal Defection. PLoS ONE, 2012, 7, e32550.	1.1	22
274	Sequence Note:envGene Characterization of the First HIV Type 1 Group O Spanish Isolate. AIDS Research and Human Retroviruses, 1996, 12, 1647-1649.	0.5	21
275	Analysis of sequential hepatitis A virus strains reveals coexistence of distinct viral subpopulations. Journal of General Virology, 2006, 87, 115-118.	1.3	21
276	In vitro synthesis of full-length influenza virus complementary RNA. EMBO Journal, 1985, 4, 243-7.	3.5	21
277	A primer vector system that allows temperature dependent gene amplification and expression in mammalian cells: regulation of the influenza virus NSI gene expression. Nucleic Acids Research, 1985, 13, 7959-7977.	6.5	20
278	Functional Mimicry of a Discontinuous Antigenic Site by a Designed Synthetic Peptide. ChemBioChem, 2002, 3, 175-182.	1.3	20
279	Broad and Dynamic Diversification of Infectious Hepatitis C Virus in a Cell Culture Environment. Journal of Virology, 2020, 94, .	1.5	20
280	A new implication of quasispecies dynamics: Broad virus diversification in absence of external perturbations. Infection, Genetics and Evolution, 2020, 82, 104278.	1.0	20
281	Population Dynamics in the Evolution of RNA Viruses. Advances in Experimental Medicine and Biology, 1998, 440, 721-727.	0.8	20
282	Influence of the Mutant Spectrum in Viral Evolution: Focused Selection of Antigenic Variants in a Reconstructed Viral Quasispecies. Molecular Biology and Evolution, 2008, 25, 1544-1554.	3.5	19
283	Deletion Mutants of VPg Reveal New Cytopathology Determinants in a Picornavirus. PLoS ONE, 2010, 5, e10735.	1.1	19
284	Sequence variability in avocado sunblotch viroid (ASBV). Nucleic Acids Research, 1988, 16, 9864-9864.	6.5	18
285	A Highly Divergent Antigenic Site of Foot-and-Mouth Disease Virus Retains Its Immunodominance. Viral Immunology, 1995, 8, 11-18.	0.6	18
286	Repeated transfer of small RNA virus populations leading to balanced fitness with infrequent stochastic drift. Molecular Genetics and Genomics, 1996, 252, 733-738.	2.4	18
287	Few Mutations in the 5′ Leader Region Mediate Fitness Recovery of Debilitated Human Immunodeficiency Type 1 Viruses. Journal of Virology, 2005, 79, 5421-5427	1.5	18
288	Transdisciplinary EU science institute needs funds urgently. Nature, 2010, 463, 876-876.	13.7	18

#	Article	IF	CITATIONS
289	RNA viruses: a bridge between life and artificial life. Lecture Notes in Computer Science, 1995, , 170-178.	1.0	18
290	Cyclic disulfide model of the major antigenic site of serotype-C foot-and-mouth disease virus. FEBS Letters, 1993, 328, 159-164.	1.3	17
291	Cytotoxic T-Lymphocyte Responses to HIV-1 Reverse Transcriptase (Review). Viral Immunology, 1998, 11, 167-181.	0.6	17
292	Molecular dissection of a viral quasispecies under mutagenic treatment: positive correlation between fitness loss and mutational load. Journal of General Virology, 2013, 94, 817-830.	1.3	17
293	Hepatitis C virus-mediated Aurora B kinase inhibition modulates inflammatory pathway and viral infectivity. Journal of Hepatology, 2015, 63, 312-319.	1.8	17
294	Virulence as a positive trait in viral persistence. Journal of Virology, 1996, 70, 6410-6413.	1.5	17
295	Effect of Expression of the Aphthovirus Protease 3C on Viral Infection and Gene Expression. Virology, 1995, 212, 111-120.	1.1	16
296	Microarray-based identification of antigenic variants of foot-and-mouth disease virus: a bioinformatics quality assessment. BMC Genomics, 2006, 7, 117.	1.2	16
297	Toll-Like Receptor 7 (TLR-7) and TLR-9 Agonists Improve Hepatitis C Virus Replication and Infectivity Inhibition by Plasmacytoid Dendritic Cells. Journal of Virology, 2018, 92, .	1.5	16
298	Molecular basis of genetic variation of viruses. , 2020, , 35-71.		16
299	Transcription of Azotobacter phage deoxyribonucleic acid. Salt-dependent equilibrium between steps in initiation Journal of Biological Chemistry, 1975, 250, 2872-2877.	1.6	16
300	SARS-CoV-2 Mutant Spectra at Different Depth Levels Reveal an Overwhelming Abundance of Low Frequency Mutations. Pathogens, 2022, 11, 662.	1.2	16
301	Azotobacter phages: Properties of phages A12, A21, A31, A41 and their constituent DNAs. Virology, 1972, 49, 439-452.	1.1	15
302	Pseudolysogeny of Azotobacter phages. Virology, 1980, 102, 267-277.	1.1	15
303	Strong buffering capacity of insect cells. Implications for the baculovirus expression system. Cytotechnology, 1995, 17, 21-26.	0.7	15
304	Competition-colonization dynamics. Communicative and Integrative Biology, 2010, 3, 333-336.	0.6	15
305	Amino Acid Substitutions Associated with Treatment Failure for Hepatitis C Virus Infection. Journal of Clinical Microbiology, 2020, 58, .	1.8	15
306	New Vaccine Design Based on Defective Genomes That Combines Features of Attenuated and Inactivated Vaccines. PLoS ONE, 2010, 5, e10414.	1.1	15

#	Article	IF	CITATIONS
307	Transcription of bacteriophage deoxyribonucleic acid. Comparison of Escherichia coli and Azotobacter vinelandii sigma subunits Journal of Biological Chemistry, 1975, 250, 2866-2871.	1.6	14
308	A cyclic disulfide peptide reproduces in solution the main structural features of a native antigenic site of foot-and-mouth disease virus. International Journal of Biological Macromolecules, 1997, 20, 209-219.	3.6	13
309	Mutational analysis of discontinuous epitopes of foot-and-mouth disease virus using an unprocessed capsid protomer precursor. Virus Research, 1998, 53, 27-37.	1.1	13
310	Viral Fitness Can Influence the Repertoire of Virus Variants Selected by Antibodies. Journal of Molecular Biology, 2006, 362, 44-54.	2.0	13
311	Molecular and Functional Bases of Selection against a Mutation Bias in an RNA Virus. Genome Biology and Evolution, 2017, 9, 1212-1228.	1.1	13
312	Transcription of Azotobacter phage deoxyribonucleic acid. Salt-dependent equilibrium between steps in initiation. Journal of Biological Chemistry, 1975, 250, 2872-7.	1.6	13
313	In vitro Selection of High Affinity DNA and RNA Aptamers that Detect Hepatitis C Virus Core Protein of Genotypes 1 to 4 and Inhibit Virus Production in Cell Culture. Journal of Molecular Biology, 2022, 434, 167501.	2.0	13
314	Long-range transport and universality classes in in vitro viral infection spread. Europhysics Letters, 2006, 74, 547-553.	0.7	12
315	Dissimilar Conservation Pattern in Hepatitis C Virus Mutant Spectra, Consensus Sequences, and Data Banks. Journal of Clinical Medicine, 2020, 9, 3450.	1.0	12
316	Population dynamics of RNA viruses: the essential contribution of mutant spectra. , 2005, , 59-71.		12
317	Crystallization and preliminary x-ray diffraction studies of a monoclonal antibody fab fragment against foot-and-mouth disease virus and of its complex with the main antigenic site peptide. Proteins: Structure, Function and Bioinformatics, 1994, 18, 201-203.	1.5	11
318	Phylogeny of HIV Type 1 Group O Isolates Based on env Gene Sequences. AIDS Research and Human Retroviruses, 1999, 15, 769-773.	0.5	11
319	QUASISPECIES. , 1999, , 1431-1436.		11
320	Characterization of minority subpopulations in the mutant spectrum of HIV-1 quasispecies by successive specific amplifications. Virus Research, 2007, 129, 123-134.	1.1	11
321	Transcription of bacteriophage deoxyribonucleic acid. Comparison of Escherichia coli and Azotobacter vinelandii sigma subunits. Journal of Biological Chemistry, 1975, 250, 2866-71.	1.6	11
322	Pseudolysogenic conversion of Azotobacter vinelandii by phage A21 and the formation of a stably converted form. Virology, 1980, 102, 278-285.	1.1	10
323	Prevalence and Genetic Heterogeneity of the Reverse Transcriptase T69S-S-X Insertion in Pretreated HIV-Infected Patients. Intervirology, 2001, 44, 339-343.	1.2	10
324	Host–microbe interactions: viruses. Current Opinion in Microbiology, 2003, 6, 383-385.	2.3	10

#	Article	IF	CITATIONS
325	Cell density-dependent expression of viral antigens during persistence of foot-and-mouth disease virus in cell culture. Virology, 2010, 403, 47-55.	1.1	10
326	Paradoxical Interplay of Viral and Cellular Functions. Viruses, 2011, 3, 272-277.	1.5	10
327	Identification of host and viral factors involved in a dissimilar resolution of a hepatitis C virus infection. Liver International, 2014, 34, 896-906.	1.9	10
328	The archaeology of coding RNA. Annals of the New York Academy of Sciences, 2019, 1447, 119-134.	1.8	10
329	Synergistic Lethal Mutagenesis of Hepatitis C Virus. Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	10
330	SARS-CoV-2 Point Mutation and Deletion Spectra and Their Association with Different Disease Outcomes. Microbiology Spectrum, 2022, 10, e0022122.	1.2	10
331	Vaccine breakthrough infections with SARS-CoV-2 Alpha mirror mutations in Delta Plus, lota, and Omicron. Journal of Clinical Investigation, 2022, 132, .	3.9	10
332	Quasispecies dynamics in hepatitis C liver transplant recipients receiving grafts from hepatitis C virus infected donors. Journal of General Virology, 2015, 96, 3493-3498.	1.3	9
333	Properties of Azotobacter phage A14 and its DNA. Virology, 1973, 56, 523-531.	1.1	8
334	Sequence Note: env Gene Diversity of HIV Type 1 Isolates from Spain. AIDS Research and Human Retroviruses, 1996, 12, 955-957.	0.5	8
335	Nucleotide Diversity in Three Different Genomic Regions of Venezuelan HIV Type 1 Isolates: A Subtyping Update. AIDS Research and Human Retroviruses, 1999, 15, 73-79.	0.5	8
336	Synthetic Peptides as Functional Mimics of a Viral Discontinuous Antigenic Site. Biologicals, 2001, 29, 265-269.	0.5	8
337	Mutagen-mediated enhancement of HIV-1 replication in persistently infected cells. Virology, 2012, 424, 147-153.	1.1	8
338	Molecular Basis of Genetic Variation of Viruses. , 2016, , 35-71.		8
339	Rare haplotype load as marker for lethal mutagenesis. PLoS ONE, 2018, 13, e0204877.	1.1	8
340	Long-term virus evolution in nature. , 2020, , 225-261.		8
341	The Time for COVID-19 Vaccination. Journal of Virology, 2021, 95, .	1.5	8
342	Error Frequencies of Picornavirus RNA Polymerases: Evolutionary Implications for Virus Populations. , 0, , 285-298.		8

#	Article	IF	CITATIONS
343	A Two-Level, Intramutant Spectrum Haplotype Profile of Hepatitis C Virus Revealed by Self-Organized Maps. Microbiology Spectrum, 2021, 9, e0145921.	1.2	8
344	Hepatitis C Virus RNA-Dependent RNA Polymerase Interacts with the Akt/PKB Kinase and Induces Its Subcellular Relocalization. Antimicrobial Agents and Chemotherapy, 2016, 60, 3540-3550.	1.4	7
345	Introduction to virus origins and their role in biological evolution. , 2020, , 1-33.		7
346	Population Disequilibrium as Promoter of Adaptive Explorations in Hepatitis C Virus. Viruses, 2021, 13, 616.	1.5	7
347	An Efficient Microarray-Based Genotyping Platform for the Identification of Drug-Resistance Mutations in Majority and Minority Subpopulations of HIV-1 Quasispecies. PLoS ONE, 2016, 11, e0166902.	1.1	7
348	Heterogeneity among influenza H3N2 isolates recovered during an outbreak. Archives of Virology, 1985, 85, 139-144.	0.9	6
349	Long-term suppression of plasma viremia with highly active antiretroviral therapy despite virus evolution and very limited selection of drug-resistant genotypes. Journal of Medical Virology, 2004, 73, 350-361.	2.5	6
350	Advantage of the high genetic diversity in RNA viruses. Future Virology, 2007, 2, 35-38.	0.9	6
351	Virus evolution. Current Opinion in Virology, 2011, 1, 410-412.	2.6	6
352	Repetitive nucleotide sequencing of a dispensable DNA segment in a clonal population of African swine fever virus. Virus Research, 1991, 20, 265-272.	1.1	5
353	Quasispecies Dynamics and Evolution of Foot-and-Mouth Disease Virus. , 2004, , 262-304.		5
354	Genomics of Viruses. , 2006, , 367-388.		5
355	Contribution of a Multifunctional Polymerase Region of Foot-and-Mouth Disease Virus to Lethal Mutagenesis. Journal of Virology, 2018, 92, .	1.5	5
356	Interaction of virus populations with their hosts. , 2020, , 123-166.		4
357	Detection and Biological Implications of Genetic Memory in Viral Quasispecies. Developments in Cardiovascular Medicine, 2003, , 259-276.	0.1	4
358	Quasispecies Dynamics and Evolution of Foot-and-Mouth Disease Virus. , 2019, , 261-304.		4
359	Translation and Protein Processing. , 0, , 141-161.		4
360	The foot-and-mouth disease RNA virus as a model in experimental phylogenetics. International Microbiology, 1998, 1, 311-8.	1.1	4

#	Article	IF	CITATIONS
361	Temperature and salt effects on the formation of preinitiation complexes between RNA polymerase and phage DNA. Nucleic Acids and Protein Synthesis, 1975, 402, 261-269.	1.7	3
362	Quasispecies Dynamics in Disease Prevention and Control. , 2016, , 263-297.		3
363	Viral Evolution and Its Relevance for Food-Borne Virus Epidemiology. , 0, , 147-169.		3
364	Guanosine inhibits hepatitis C virus replication and increases indel frequencies, associated with altered intracellular nucleotide pools. PLoS Pathogens, 2022, 18, e1010210.	2.1	3
365	The International Virus Bioinformatics Meeting 2022. Viruses, 2022, 14, 973.	1.5	3
366	Virus Population Dynamics Examined with Experimental Model Systems. , 2016, , 197-225.		2
367	Long-Term Virus Evolution in Nature. , 2016, , 227-262.		2
368	Trends in antiviral strategies. , 2020, , 301-339.		2
369	Akt Phosphorylation of Hepatitis C Virus NS5B Regulates Polymerase Activity and Hepatitis C Virus Infection. Frontiers in Microbiology, 2021, 12, 754664.	1.5	2
370	Quasispecies and Drug Resistance. , 2017, , 123-147.		2
371	Quasispecies theory has come of age, and regular updates of the concept of mutation. Introduction. Current Topics in Microbiology and Immunology, 2016, 392, ix-xi.	0.7	2
372	Similar HIV-1 evolution and immunological responses at 10 years despite several therapeutic strategies and host HLA Types. Journal of Medical Virology, 2004, 73, 495-501.	2.5	1
373	Viral Quasispecies and Lethal Mutagenesis. European Review, 2016, 24, 39-48.	0.4	1
374	Darwinian Principles Acting on Highly Mutable Viruses. , 2016, , 73-122.		1
375	Interaction of Virus Populations with Their Hosts. , 2016, , 123-168.		1
376	Viral Fitness as a Measure of Adaptation. , 2016, , 169-195.		1
377	Trends in Antiviral Strategies. , 2016, , 299-338.		1
378	Viral fitness as a measure of adaptation. , 2020, , 167-194.		1

#	Article	IF	CITATIONS
379	Repeated transfer of small RNA virus populations leading to balanced fitness with infrequent stochastic drift. , 1996, 252, 733.		1
380	Quasispecies Dynamics Taught by Natural and Experimental Evolution of Foot-and-mouth Disease Virus. , 2017, , 147-170.		1
381	Picornavirus Variation. , 1993, , 255-281.		1
382	Virus Evolution in the Face of the Host Response. , 2005, , 343-348.		0
383	Foot-and-Mouth Disease. , 2014, , 397-410.		0
384	Origin and Evolution of the <i>Picornaviridae</i> Proteome. , 0, , 253-270.		0
385	Quasispecies and Drug Resistance. , 2014, , 1-22.		0
386	Species Concepts: Viral Quasispecies. , 2016, , 228-235.		0
387	Introduction to Virus Origins and Their Role in Biological Evolution. , 2016, , 1-33.		0
388	Collective Population Effects in Nonviral Systems. , 2016, , 339-362.		0
389	Allelic variantes of Aurora B kinase gene can be related with fibrosis progression in chronic hepatitis C. Journal of Hepatology, 2017, 66, S319-S320.	1.8	0
390	Darwinian principles acting on highly mutable viruses. , 2020, , 73-121.		0
391	Virus population dynamics examined with experimental model systems. , 2020, , 195-223.		0
392	Quasispecies dynamics in disease prevention and control. , 2020, , 263-299.		0
393	Collective population effects in nonviral systems. , 2020, , 341-366.		0
394	A Discontinuous Antigenic Site Is Functionally Reproduced by Synthetic Peptide Constructions. , 2001, , 1018-1020.		0
395	Microbial Evolution and Emerging Diseases. Neurological Disease and Therapy, 2005, , 1-34.	0.0	0
396	Structural Dynamics of Picornaviral RdRP Complexes. Implications for the Design of Antivirals. NATO Science for Peace and Security Series A: Chemistry and Biology, 2012, , 183-193.	0.5	0

#	Article	IF	CITATIONS
397	Receptors. , 0, , 73-86.		Ο
398	The Making of a Picornavirus Genome. , 0, , 33-55.		0
399	SITE-DIRECTED MUTAGENESIS AS A TOOL IN GENETICS. , 1978, , 167-182.		0
400	Synthetic peptides as probes to study the antigenic variability of foot-and-mouth disease virus. , 1991, , 864-866.		0
401	Cyclic peptide mimetics of the major antigenic site of foot-and-mouth disease virus. , 1995, , 857-858.		0
402	Molecular Evolution of Aphthoviruses. , 1996, , 125-135.		0
403	Genome Replication I: the Players. , 0, , 105-125.		0
404	Genome Organization and Encoded Proteins. , 0, , 1-17.		0
405	Persistent Infections. , 0, , 321-335.		0
406	Group B Coxsackievirus Diseases. , 0, , 353-368.		0
407	Mutation, Quasispecies, and Lethal Mutagenesis. , 0, , 195-211.		0
408	RNA Genetics., 0,,.		0
409	Adaptive value of foot-and-mouth disease virus capsid substitutions with opposite effects on particle acid stability. Scientific Reports, 2021, 11, 23494.	1.6	0