List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2668977/publications.pdf Version: 2024-02-01

		257450	302126
212	2,241	24	39
papers	citations	h-index	g-index
213	213	213	971
all docs	docs citations	times ranked	citing authors

Δεκματ Βακαρου

#	Article	IF	CITATIONS
1	Effect of dc and ac excitations on the longitudinal resistance of a two-dimensional electron gas in highly doped GaAs quantum wells. Physical Review B, 2005, 72, .	3.2	99
2	Zero-Differential Resistance State of Two-Dimensional Electron Systems in Strong Magnetic Fields. Physical Review Letters, 2007, 99, 116801.	7.8	79
3	Effect of a dc electric field on the longitudinal resistance of two-dimensional electrons in a magnetic field. Physical Review B, 2007, 75, .	3.2	76
4	Interference oscillations of microwave photoresistance in double quantum wells. Physical Review B, 2008, 78, .	3.2	74
5	Viscous electron flow in mesoscopic two-dimensional electron gas. AIP Advances, 2018, 8, .	1.3	72
6	Microwave Zero-Resistance States in a Bilayer Electron System. Physical Review Letters, 2010, 105, 026804.	7.8	62
7	Viscous transport and Hall viscosity in a two-dimensional electron system. Physical Review B, 2018, 98,	3.2	62
8	Resonance oscillations of magnetoresistance in double quantum wells. Physical Review B, 2008, 77, .	3.2	61
9	Giant magnetoresistance oscillations induced by microwave radiation and a zero-resistance state in a 2D electron system with a moderate mobility. JETP Letters, 2006, 84, 391-394.	1.4	55
10	Vorticity-induced negative nonlocal resistance in a viscous two-dimensional electron system. Physical Review B, 2018, 97, .	3.2	55
11	Acoustic and optical phonon scattering in a single In(Ga)As quantum dot. Physical Review B, 2011, 83, .	3.2	53
12	Quantum Dots for Single- and Entangled-Photon Emitters. IEEE Photonics Journal, 2009, 1, 58-68.	2.0	52
13	Non-classical light emission from a single electrically driven quantum dot. Optics Express, 2007, 15, 9107.	3.4	35
14	Magnetoresistance oscillations in multilayer systems: Triple quantum wells. Physical Review B, 2009, 80, .	3.2	35
15	Stokes flow around an obstacle in viscous two-dimensional electron liquid. Scientific Reports, 2020, 10, 7860.	3.3	34
16	Magnetophonon resonance in a GaAs quantum well with AlAs/GaAs superlattice barriers at high filling factors. JETP Letters, 2005, 81, 523-526.	1.4	33
17	Diffusion and ballistic contributions of the interaction correction to the conductivity of a two-dimensional electron gas. Physical Review B, 2006, 74, .	3.2	33
18	Observation of the intrinsic spin Hall effect in a two-dimensional electron gas. Physical Review B, 2013, 88, .	3.2	33

#	Article	IF	CITATIONS
19	Interface phonons in InAs and AlAs quantum dot structures. Physical Review B, 2004, 70, .	3.2	32
20	Nonlinear transport and oscillating magnetoresistance in double quantum wells. Physical Review B, 2009, 80, .	3.2	29
21	Crossover between distinct mechanisms of microwave photoresistance in bilayer systems. Physical Review B, 2010, 81, .	3.2	29
22	Photoluminescence of high-quality AlGaAs layers grown by molecular-beam epitaxy. Applied Physics Letters, 2000, 76, 1131-1133.	3.3	27
23	Raman study of self-assembled GaAs and AlAs islands embedded in InAs. Physical Review B, 2000, 61, 13785-13790.	3.2	27
24	Millisecond photoluminescence kinetics in a system of direct-bandgap InAs quantum dots in an AlAs matrix. JETP Letters, 2003, 77, 389-392.	1.4	26
25	Magnetotransport of a quasi-three-dimensional electron gas in the lowest Landau level. Physical Review B, 2002, 65, .	3.2	25
26	Quasiclassical negative magnetoresistance of a two-dimensional electron gas in a random magnetic field. Physical Review B, 2001, 65, .	3.2	23
27	Electron transport in suspended semiconductor structures with two-dimensional electron gas. Applied Physics Letters, 2012, 100, 181902.	3.3	22
28	Landau-level crossing in two-subband systems in a tilted magnetic field. Physical Review B, 2007, 76, .	3.2	21
29	Manifestations of classical size effect and electronic viscosity in the magnetoresistance of narrow two-dimensional conductors: Theory and experiment. Physical Review B, 2020, 101, .	3.2	21
30	Blockade of tunneling in a suspended single-electron transistor. JETP Letters, 2008, 87, 150-153.	1.4	20
31	Classical and quantum magnetoresistance in a two-subband electron system. Physical Review B, 2009, 80, .	3.2	20
32	Nonlinear transport phenomena in a two-subband system. Physical Review B, 2011, 84, .	3.2	20
33	Viscous magnetotransport and Gurzhi effect in bilayer electron system. Physical Review B, 2021, 103, .	3.2	20
34	Coexistence of a two- and three-dimensional Landau states in a wide parabolic quantum well. Physical Review B, 2001, 64, .	3.2	19
35	Microwave-Induced Magneto-Oscillations and Signatures of Zero-Resistance States in Phonon-Drag Voltage in Two-Dimensional Electron Systems. Physical Review Letters, 2015, 115, 206801.	7.8	18
36	Giant microwave photo-conductance of a tunnel point contact with a bridged gate. Applied Physics Letters, 2015, 107, .	3.3	18

#	Article	IF	CITATIONS
37	Coulomb blockade and the thermopower of a suspended quantum dot. JETP Letters, 2006, 83, 122-126.	1.4	17
38	Lateral-electric-field-induced spin polarization in a suspended GaAs quantum point contact. Applied Physics Letters, 2018, 112, .	3.3	17
39	Excitonic polaritons in semiconductor solid solutions AlxGa1-xAs. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 900-905.	0.8	16
40	High-order fractional microwave-induced resistance oscillations in two-dimensional systems. Physical Review B, 2009, 80, .	3.2	16
41	Piezoelectric Electromechanical Coupling in Nanomechanical Resonators with a Two-Dimensional Electron Gas. Physical Review Letters, 2016, 117, 017702.	7.8	16
42	Quantum dots formed in InSb/AlAs and AlSb/AlAs heterostructures. JETP Letters, 2016, 103, 692-698.	1.4	16
43	Hall effect in a spatially fluctuating magnetic field with zero mean. Physical Review B, 2000, 61, 5505-5510.	3.2	15
44	Reentrant Quantum Hall Effect and Anisotropic Transport in a Bilayer System at High Filling Factors. Physical Review Letters, 2007, 99, 126804.	7.8	15
45	Interlayer interference in double wells in a tilted magnetic field. Physical Review B, 2008, 78, .	3.2	15
46	Thermally activated intersubband scattering and oscillating magnetoresistance in quantum wells. Physical Review B, 2010, 82, .	3.2	15
47	Terahertz radiation-induced magnetoresistance oscillations of a high-density and high-mobility two-dimensional electron gas. JETP Letters, 2013, 97, 41-44.	1.4	15
48	Actuation and transduction of resonant vibrations in GaAs/AlGaAs-based nanoelectromechanical systems containing two-dimensional electron gas. Applied Physics Letters, 2015, 106, 183110.	3.3	15
49	Monolithically integrated single quantum dots coupled to bowtie nanoantennas. Optics Express, 2016, 24, 28936.	3.4	15
50	Macroscopic transverse drift of long current-induced spin coherence in two-dimensional electron gases. Physical Review B, 2016, 94, .	3.2	15
51	Thermopower of a multiprobe ballistic conductor. Physical Review B, 2002, 66, .	3.2	14
52	Electrically driven quantum dot single photon source. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 547-550.	0.8	14
53	Evidence for zero-differential resistance states in electronic bilayers. Physical Review B, 2011, 83,	3.2	14
54	Magnetotransport properties of a ballistic ring interferometer on the basis of a GaAs quantum well with a high concentration of 2D electron gas. JETP Letters, 2000, 72, 209-212.	1.4	13

#	Article	IF	CITATIONS
55	Interface phonons in semiconductor nanostructures with quantum dots. Journal of Experimental and Theoretical Physics, 2005, 101, 554-561.	0.9	13
56	High-speed single-photon source based on self-organized quantum dots. Semiconductor Science and Technology, 2011, 26, 014003.	2.0	13
57	Coexistence of collective and single-particle effects in the photoresponse of a 2D electron gas to microwave radiation. JETP Letters, 2007, 85, 576-580.	1.4	12
58	The features of ballistic electron transport in a suspended quantum point contact. Applied Physics Letters, 2014, 104, .	3.3	12
59	Influence of the additional p ⁺ doped layers on the properties of AlGaAs/InGaAs/AlGaAs heterostructures for high power SHF transistors. Journal Physics D: Applied Physics, 2016, 49, 095108.	2.8	12
60	Resonant Raman scattering in nanostructures with InGaAs/AlAs quantum dots. JETP Letters, 2006, 83, 505-508.	1.4	11
61	Absolute negative resistance in a nonequilibrium two-dimensional electron system in a strong magnetic field. JETP Letters, 2008, 86, 608-611.	1.4	11
62	Resonant optical control of the electrically induced spin polarization by periodic excitation. Physical Review B, 2014, 90, .	3.2	11
63	Long-lived nanosecond spin coherence in high-mobility 2DEGs confined in double and triple quantum wells. Journal of Applied Physics, 2016, 119, 215701.	2.5	11
64	Magnetointersubband resistance oscillations in GaAs quantum wells placed in a tilted magnetic field. Physical Review B, 2016, 93, .	3.2	11
65	Gate control of the spin mobility through the modification of the spin-orbit interaction in two-dimensional systems. Physical Review B, 2017, 95, .	3.2	11
66	Ballistic magnetotransport in a suspended two-dimensional electron gas with periodic antidot lattices. Semiconductors, 2017, 51, 8-13.	0.5	11
67	Magnetic-field-induced transition in a wide parabolic well superimposed with a superlattice. Physical Review B, 2010, 81, .	3.2	10
68	The role of Euler buckling instability in the fabrication of nanoelectromechanical systems on the basis of GaAs/AlGaAs heterostructures. Applied Physics Letters, 2012, 101, .	3.3	10
69	High-amplitude dynamics of nanoelectromechanical systems fabricated on the basis of GaAs/AlGaAs heterostructures. Applied Physics Letters, 2013, 103, 131905.	3.3	10
70	Circularly Polarized Photoluminescence as a Probe of Density of States in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>GaAs</mml:mi><mml:mo>/</mml:mo><mml:mi>AlGaAs</mml:mi>Quant Hall Bilayers. Physical Review Letters, 2012, 109, 046802.</mml:math 		9
71	Fine structure of the exciton states in InAs quantum dots. JETP Letters, 2013, 97, 274-278.	1.4	9
72	Spectroscopic evidence of quantum Hall interlayer tunneling gap collapse caused by tilted magnetic field in a GaAs/AlGaAs triple quantum well. Physical Review B, 2014, 89, .	3.2	9

#	Article	IF	CITATIONS
73	Electron-nuclei interaction in the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>X</mml:mi> valley of (In,Al)As/AlAs quantum dots. Physical Review B, 2020, 101, .</mml:math 	3.2	9
74	Diffusion of Photoexcited Holes in a Viscous Electron Fluid. Physical Review Letters, 2022, 128, 136801.	7.8	9
75	Single-mode vertical-cavity surface emitting lasers for 87Rb-based chip-scale atomic clock. Semiconductors, 2010, 44, 1422-1426.	0.5	8
76	MBE-grown InSb photodetector arrays. Technical Physics, 2017, 62, 915-919.	0.7	8
77	Beats of Quantum Oscillations of the Resistance in Two-Subband Electron Systems in Tilted Magnetic Fields. JETP Letters, 2019, 109, 400-405.	1.4	8
78	Oscillations of the magnetoresistance of a two-dimensional electron gas in a GaAs quantum well with AlAs/GaAs superlattice barriers in a microwave field. JETP Letters, 2005, 81, 284-286.	1.4	7
79	Microwave photoresistance in a two-dimensional electron system with anisotropic mobility. JETP Letters, 2008, 86, 779-782.	1.4	7
80	Emergent and reentrant fractional quantum Hall effect in trilayer systems in a tilted magnetic field. Physical Review B, 2009, 80, .	3.2	7
81	A study of disorder effects in random (AlxGa1â^'xAs)n(AlyGa1â^'yAs)m superlattices embedded in a wide parabolic potential. Applied Physics Letters, 2010, 96, 113106.	3.3	7
82	Quantum oscillations of spin polarization in a GaAs/AlGaAs double quantum well. Physical Review B, 2012, 86, .	3.2	7
83	Large anisotropic spin relaxation time of exciton bound to donor states in triple quantum wells. Journal of Applied Physics, 2017, 121, .	2.5	7
84	Anisotropy of magnetic transport and self-organization of corrugated heterointerfaces in selectively doped structures on GaAs(100) substrates. JETP Letters, 2001, 74, 164-167.	1.4	6
85	Giant hysteresis of magnetoresistance in the quantum hall effect regime. JETP Letters, 2007, 86, 264-267.	1.4	6
86	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:msub><mml:mrow /><mml:mi>x</mml:mi></mml:mrow </mml:msub> Ga <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow /><mml:mrow><mml:mn>1</mml:mn><mml:mo>â^*</mml:mo><mml:mi>x</mml:mi></mml:mrow><td>3.2 >> <td>6 nath>As/GaAs</td></td></mml:mrow </mml:msub></mml:math 	3.2 >> <td>6 nath>As/GaAs</td>	6 nath>As/GaAs
87	double quantum well heterostructures near the balance. Physical Review B, 2011, 84, . Hysteretic phenomena in a 2DEG in the quantum Hall effect regime, studied in a transport experiment. Semiconductors, 2014, 48, 1423-1431.	0.5	6
88	Increasing Saturated Electron-Drift Velocity in Donor–Acceptor Doped pHEMT Heterostructures. Technical Physics Letters, 2018, 44, 260-262.	0.7	6
89	Suspended quantum point contact with triple channel selectively driven by side gates. Applied Physics Letters, 2019, 115, .	3.3	6
90	Recombination and spin dynamics of excitons in thin (Ga,Al)(Sb,As)/AlAs quantum wells with an indirect band gap and type-I band alignment. Physical Review B, 2020, 102, .	3.2	6

#	Article	IF	CITATIONS
91	Electrical control of spin relaxation anisotropy during drift transport in a two-dimensional electron gas. Physical Review B, 2020, 102, .	3.2	6
92	Vertical longitudinal magnetoresistance of semiconductor superlattices. Physical Review B, 2001, 63, .	3.2	5
93	Resonance backscattering in submicron rings. JETP Letters, 2003, 78, 30-33.	1.4	5
94	Semiclassical negative magnetoresistance of a 2D electron gas caused by scattering by short-range and long-range potentials. JETP Letters, 2003, 78, 134-137.	1.4	5
95	Spin-dependent Hall effect in a parabolic well with a quasi-three-dimensional electron gas. Physical Review B, 2005, 71, .	3.2	5
96	Resonance breakdown of a Coulomb blockade due to the mechanical vibrations of a quantum dot. JETP Letters, 2009, 90, 574-577.	1.4	5
97	Dephasing and interwell transitions in double quantum well heterostructures. Physical Review B, 2010, 82, .	3.2	5
98	Microwave-induced Hall resistance in bilayer electron systems. Physical Review B, 2011, 83, .	3.2	5
99	Magnetocapacitance oscillations and thermoelectric effect in a two-dimensional electron gas irradiated by microwaves. Physical Review B, 2016, 94, .	3.2	5
100	Formation of low-dimensional structures in the InSb/AlAs heterosystem. Semiconductors, 2017, 51, 1233-1239.	0.5	5
101	Spinodal Decomposition in InSb/AlAs Heterostructures. Semiconductors, 2018, 52, 1392-1397.	0.5	5
102	Tailoring multilayer quantum wells for spin devices. Pramana - Journal of Physics, 2018, 91, 1.	1.8	5
103	Microwave-induced zero-resistance states in a high-mobility two-subband electron system. Journal Physics D: Applied Physics, 2018, 51, 28LT01.	2.8	5
104	Anisotropic exchange splitting of excitons affected by ΓX mixing in (In,Al)As/AlAs quantum dots: Microphotoluminescence and macrophotoluminescence measurements. Physical Review B, 2019, 100, .	3.2	5
105	Crossing and anticrossing of 1D subbands in a quantum point contact with in-plane side gates. Applied Physics Letters, 2021, 118, .	3.3	5
106	Millimeter-Wave Donor–Acceptor-Doped DpHEMT. IEEE Transactions on Electron Devices, 2021, 68, 53-56.	3.0	5
107	Ultralow-threshold cryogenic vertical-cavity surface-emitting laser with AlAsoxide–GaAs distributed Bragg reflectors. Journal of Applied Physics, 2004, 96, 1289-1292.	2.5	4
108	Anisotropic positive magnetoresistance of a nonplanar 2D electron gas in a parallel pagnetic field. JETP Letters, 2004, 79, 495-498.	1.4	4

#	Article	IF	CITATIONS
109	Negative magnetoresistance of a high-mobility two-dimensional electron gas in a nonlinear regime. JETP Letters, 2005, 81, 406-408.	1.4	4
110	Observation of commensurability oscillations of thermopower in an antidot lattice. JETP Letters, 2005, 81, 462-466.	1.4	4
111	Nonequilibrium state of the two-dimensional electron gas in the integer quantum Hall effect regime. JETP Letters, 2009, 89, 46-49.	1.4	4
112	Effect of an in-plane magnetic field on magnetoresistance hysteresis of the two-dimensional electron gas in the integer quantum Hall effect regime. JETP Letters, 2009, 89, 92-95.	1.4	4
113	Magneto-optical probe of quantum Hall states in a wide parabolic well modulated by random potential. Physical Review B, 2012, 85, .	3.2	4
114	Magnetic field induced charge redistribution in artificially disordered quantum Hall superlattices. Europhysics Letters, 2012, 97, 17010.	2.0	4
115	Microwave-induced nonlocal transport in a two-dimensional electron system. Physical Review B, 2014, 89, .	3.2	4
116	Efficient single-photon emitters based on Bragg microcavities containing selectively positioned InAs quantum dots. Semiconductors, 2015, 49, 33-38.	0.5	4
117	High harmonics of the cyclotron resonance in microwave transmission of a high-mobility two-dimensional electron system. Physical Review Research, 2021, 3, .	3.6	4
118	Electrostatic actuation and charge sensing in piezoelectric nanomechanical resonators with a two-dimensional electron gas. Applied Physics Letters, 2021, 118, .	3.3	4
119	Double-Channel Electron Transport in Suspended Quantum Point Contacts with in-Plane Side Gates. Semiconductors, 2020, 54, 1605-1610.	0.5	4
120	The formation of inas quantum dotsin an aluminum oxide matrix. Technical Physics Letters, 2002, 28, 554-556.	0.7	3
121	Mesoscopic fluctuations of thermopower in a periodic antidot lattice. JETP Letters, 2004, 79, 166-170.	1.4	3
122	Magneto-intersubband oscillations in triple quantum wells. Physica E: Low-Dimensional Systems and Nanostructures, 2010, 42, 1088-1090.	2.7	3
123	Tuning of the Landé g-factor in Al _{<i>x</i>} Ga _{1â~`<i>x</i>} As/AlAs single and double quantum wells. Journal of Physics: Conference Series, 2013, 456, 012015.	0.4	3
124	Identification of photoluminescence bands in AlGaAs/InGaAs/GaAs PHEMT heterostructures with donor-acceptor-doped barriers. Semiconductors, 2015, 49, 224-228.	0.5	3
125	Macroscopic transport of a current-induced spin polarization. Journal of Physics: Conference Series, 2017, 864, 012060.	0.4	3
126	Mobility of the Two-Dimensional Electron Gas in DA-pHEMT Heterostructures with Various δ–n-Layer Profile Widths. Semiconductors, 2018, 52, 44-52.	0.5	3

#	Article	IF	CITATIONS
127	Modulation of Magneto-Intersubband Oscillations in a One-Dimensional Lateral Superlattice. JETP Letters, 2019, 110, 354-358.	1.4	3
128	Nonlinear AC and DC Conductivities in a Two-Subband n-GaAs/AlAs Heterostructure. JETP Letters, 2020, 112, 45-52.	1.4	3
129	Low-temperature dissipation and its persistent photoinduced change in AlGaAs/GaAs-based nanomechanical resonators. Applied Physics Letters, 2020, 116, .	3.3	3
130	Temperature damping of magneto-intersubband resistance oscillations in magnetically entangled subbands. Physical Review B, 2021, 104, .	3.2	3
131	Dependences of the Transport Scattering Time and Quantum Lifetime on the Two-Dimensional Electron Gas Density in Modulation-Doped Single GaAs Quantum Wells with AlAs/GaAs Short-Period Superlattice Barriers. JETP Letters, 2020, 112, 437-443.	1.4	3
132	Phonon drag thermoelectric phenomena in mesoscopic two-dimensional conductors: Current stripes, large Nernst effect, and influence of electron-electron interaction. Physical Review B, 2020, 102, .	3.2	3
133	Suppression of Magneto-Intersubband Resistance Oscillations by Large-Scale Fluctuations of the Intersubband Energy Splitting. JETP Letters, 2021, 114, 423-428.	1.4	3
134	Lasing characteristics of lasers with a vertical cavity based on In0.2Ga0.8As quantum wells. Technical Physics Letters, 1999, 25, 775-777.	0.7	2
135	Exciton recombination in δ-doped type-II GaAs/AlAs superlattices. Semiconductors, 2002, 36, 461-465.	0.5	2
136	Coulomb oscillations of conductance in an open ring interferometer in a strong magnetic field. JETP Letters, 2003, 78, 642-645.	1.4	2
137	Shubnikov de Haas oscillations in double wells with opposite signs of the electronic g-factor. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 1560-1562.	2.7	2
138	QUANTUM HALL FERROMAGNET IN A DOUBLE WELL WITH VANISHING g -FACTOR. International Journal of Modern Physics B, 2009, 23, 2933-2937.	2.0	2
139	Fractional quantum Hall effect in second subband of a 2DES. Europhysics Letters, 2011, 94, 37010.	2.0	2
140	Valence band tail states in disordered superlattices embedded in wide parabolic AlGaAs well. Journal of Applied Physics, 2012, 111, 123523.	2.5	2
141	Nonequilibrium currents in the quantum Hall effect regime spatially resolved by transport experiment. Journal of Physics: Conference Series, 2013, 456, 012005.	0.4	2
142	Ballistic thermopower of suspended semiconductor Hall bars with two dimensional electron gas. Journal of Physics: Conference Series, 2015, 643, 012079.	0.4	2
143	Magnetophonon oscillations of thermoelectric power and combined resonance in two-subband electron systems. Physical Review B, 2016, 94, .	3.2	2
144	Nonequilibrium chemical potential in a two-dimensional electron gas in the quantum-Hall-effect regime. Semiconductors, 2016, 50, 1049-1053.	0.5	2

#	Article	IF	CITATIONS
145	Excitonic spin-splitting in quantum wells with a tilted magnetic field. Journal of Physics Condensed Matter, 2016, 28, 055503.	1.8	2
146	The observation of the Aharonov-Bohm effect in suspended semiconductor ring interferometers. Journal of Physics: Conference Series, 2018, 964, 012008.	0.4	2
147	Kinetics of Structural Changes on GaSb(001) Singular and Vicinal Surfaces During the UHV Annealing. Semiconductors, 2018, 52, 664-666.	0.5	2
148	On-Chip Piezoelectric Actuation of Nanomechanical Resonators Containing a Two-Dimensional Electron Gas. JETP Letters, 2019, 109, 261-265.	1.4	2
149	AC and DC Conductivities in an n-GaAs/AlAs Heterostructure with a Wide Quantum Well in the Integer Quantum Hall Effect Regime. JETP Letters, 2019, 110, 68-73.	1.4	2
150	AlInSb/InSb Heterostructures for IR Photodetectors Grown by Molecular-Beam Epitaxy. Technical Physics Letters, 2020, 46, 154-157.	0.7	2
151	Experimental analysis of the spin–orbit coupling dependence on the drift velocity of a spin packet. AIP Advances, 2020, 10, .	1.3	2
152	Polariton luminescence in high-purity layers of AlGaAs solid solutions. JETP Letters, 2000, 71, 148-150.	1.4	1
153	Magnetoresistance in a stripe-shaped two-dimensional electron gas. Physica B: Condensed Matter, 2001, 298, 79-82.	2.7	1
154	Geometrical resonance in the resistivity of wide quantum wells. Physica E: Low-Dimensional Systems and Nanostructures, 2002, 13, 777-781.	2.7	1
155	Commensurate oscillations of the magnetoresistance of a two-dimensional electron gas in GaAs quantum wells with corrugated heteroboundaries. JETP Letters, 2003, 77, 662-665.	1.4	1
156	Lateral Photoconductivity of AlGaAsâ^•InGaAs Structures with Quantum Wells and Self-Organized Quantum Dots Under Interband Illumination. Semiconductors, 2005, 39, 103.	0.5	1
157	Hall breakdown in a modulation-doped GaAs/AlAs heterostructure. JETP Letters, 2007, 85, 63-66.	1.4	1
158	VALLEY SPLITTING AND g-FACTOR IN AlAs QUANTUM WELLS. International Journal of Modern Physics B, 2009, 23, 2948-2954.	2.0	1
159	Microwave induced magnetoresistance oscillations and inelastic scattering time in double quantum wells. Physica E: Low-Dimensional Systems and Nanostructures, 2010, 42, 1075-1077.	2.7	1
160	Inverted hysteresis of magnetoresistance of a 2DEG at integer filling factors. , 2011, , .		1
161	Emergent fractional quantum Hall effect at even denominator $\langle i \rangle \hat{l}/2 \langle i \rangle = 3/2$ in a triple quantum well in tilted magnetic fields. Journal of Physics: Conference Series, 2011, 334, 012026.	0.4	1
162	Structure and morphology of InSb epitaxial films in the AlAs matrix. Nanotechnologies in Russia, 2016, 11, 12-19.	0.7	1

#	Article	IF	CITATIONS
163	Determining the structure of energy in heterostructures with diffuse interfaces. Bulletin of the Russian Academy of Sciences: Physics, 2017, 81, 1052-1057.	0.6	1
164	Robustness of spin polarization against temperature in multilayer structure: Triple quantum well. Journal of Applied Physics, 2018, 123, 214306.	2.5	1
165	Below bottleneck polaritonic radiation in ultra high quality AlGaAs alloys. Springer Proceedings in Physics, 2001, , 91-92.	0.2	1
166	Optical phonons in nanosize GaAs and AlAs clusters in an InAs matrix. JETP Letters, 1999, 70, 469-475.	1.4	0
167	Oscillation of the mirror and fractional RHEED reflections during homoepitaxy on the (2×4)-reconstructed GaAs(001) surface. Technical Physics Letters, 2000, 26, 307-310.	0.7	Ο
168	Raman spectroscopy of self-assembled InAs quantum dots in wide-bandgap matrices of AlAs and aluminium oxide. Materials Research Society Symposia Proceedings, 2002, 737, 144.	0.1	0
169	Power Microwave FETs Using Epitaxial AlGaAs/GaAs Structures. Russian Microelectronics, 2002, 31, 137-142.	0.5	Ο
170	Recombination of excitons bound on donor-acceptor impurity pairs in δ-doped type II GaAs/AlAs superlattices. Physica Status Solidi C: Current Topics in Solid State Physics, 2003, 0, 657-660.	0.8	0
171	Ring interferometer on the basis of 2D electron gas in a double quantum well. JETP Letters, 2003, 78, 560-563.	1.4	Ο
172	Formation of InAs quantum dots in an aluminium oxide matrix by lateral selective wet oxidation. , 2003, , .		0
173	Influence of Fermi-system chirality on the temperature dependence of the Aharonov-Bohm effect. JETP Letters, 2004, 79, 28-31.	1.4	Ο
174	<title>Photoluminescence kinetics of type II GaAs/AlAs superlattices under the influence of an electric field</title> . , 2005, , .		0
175	Long-Time Photoluminescence Kinetics of InAsâ^•AlAs Quantum Dots in a Magnetic Field. Semiconductors, 2005, 39, 27.	0.5	Ο
176	Aharonov-Bohm Ring Interferometer on the Basis of 2D Electron Gas in a Double Quantum Well. AIP Conference Proceedings, 2005, , .	0.4	0
177	Mechanism of Recombination in InAs Quantum Dots in Indirect Bandgap AlGaAs Matrices. AIP Conference Proceedings, 2005, , .	0.4	Ο
178	Coulomb Oscillations of Conductance in an Open Ring Interferometer in the Quantum Hall Regime. AIP Conference Proceedings, 2005, , .	0.4	0
179	Non-Markovian Memory Effects in Ballistic Two-Dimensional Electron System With Non-Planar Topology. AlP Conference Proceedings, 2005, , .	0.4	0
180	Interface phonons of quantum dots in InAs/(Al,Ga)As heteroepitaxial system: a Raman study. AIP Conference Proceedings, 2005, , .	0.4	0

#	Article	IF	CITATIONS
181	Resonance Backscattering in Triangular Quantum Dots Inside a Small Ring Interferometer. AIP Conference Proceedings, 2005, , .	0.4	Ο
182	Electrically pumped InAs single quantum dot emitter. , 2006, 6350, 80.		0
183	Exciton-polariton transition induced by elastic exciton-exciton collisions in ultrahigh quality AIGaAs alloys. Semiconductors, 2006, 40, 527-533.	0.5	Ο
184	Prolonged decay of free-to-bound photoluminescence in direct band gap InGaAs and AlGaAs alloys: magnetic resonance studies. Semiconductor Science and Technology, 2006, 21, 105-111.	2.0	0
185	Electronic Raman Scattering in InAs/AlAs Quantum Dot Structures. AIP Conference Proceedings, 2007, , .	0.4	0
186	Reentrant quantum Hall effect in bilayer system at high filling factors. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 1576-1578.	2.7	0
187	MAGNETORESISTANCE OSCILLATIONS IN DOUBLE QUANTUM WELLS UNDER MICROWAVE IRRADIATION. International Journal of Modern Physics B, 2009, 23, 2943-2947.	2.0	Ο
188	Single-mode vertical-cavity surface-emitting lasers for atomic clocks. Optoelectronics, Instrumentation and Data Processing, 2009, 45, 361-366.	0.6	0
189	Magnetoresistance oscillations in triple quantum wells under microwave irradiation. Physica E: Low-Dimensional Systems and Nanostructures, 2010, 42, 2614-2617.	2.7	Ο
190	Integer and fractional microwave induced resistance oscillations in a 2D system with moderate mobility. Physica E: Low-Dimensional Systems and Nanostructures, 2010, 42, 1078-1080.	2.7	0
191	Mechanical vibrations induced resonant breakdown of the Coulomb blockade. AIP Conference Proceedings, 2011, , .	0.4	0
192	Microwave-induced zero-resistance states in bilayer electron systems. , 2011, , .		0
193	Zero-resistance states in bilayer electron systems induced by microwave irradiation. Journal of Physics: Conference Series, 2011, 334, 012014.	0.4	Ο
194	Electrically driven single photon sources based on single quantum dot RCLEDs. , 2011, , .		0
195	Magnetotransport in a wide parabolic well superimposed with a superlattice. Journal of Applied Physics, 2011, 109, 102403.	2.5	0
196	Spectroscopy of single InAs quantum dots. Optoelectronics, Instrumentation and Data Processing, 2013, 49, 498-503.	0.6	0
197	Phase transitions in quantum Hall multiple layer systems. , 2013, , .		0
198	Shubnikov-de Haas effect in tilted magnetic fields in wide quantum well. Journal of Physics: Conference Series, 2013, 456, 012025.	0.4	0

#	Article	IF	CITATIONS
199	Photoluminescence of AlGaAs/InGaAs/GaAs phemt heterostructures with donor-acceptor doping of barriers. , 2014, , .		0
200	2D electron gas mobility in pseudomorphic AlGaAs/InGaAs/AlGaAs heterostructures with donor-acceptor doping. , 2014, , .		0
201	Electromechanical coupling in suspended nanomechanical resonators with a two-dimensional electron gas. Journal of Physics: Conference Series, 2017, 864, 012043.	0.4	0
202	Electrically controlled spin polarization in suspended GaAs quantum point contacts. Journal of Physics: Conference Series, 2018, 1124, 061001.	0.4	0
203	Elastic Properties of Suspended Conducting GaAs/AlGaAs Nanostructures by Means of Atomic Force Microscopy. Optoelectronics, Instrumentation and Data Processing, 2018, 54, 496-501.	0.6	0
204	Determination of Electron Temperature in DA-pHEMT Heterostructures by Shubnikov – de Haas Oscillation Method. Russian Physics Journal, 2018, 61, 1202-1209.	0.4	0
205	The DA-pHEMT heterostructures for power microwave transistors. , 2019, , .		0
206	The deformation-potential scattering and alloy disorder scattering in donor-acceptor pHEMT heterostructures. IOP Conference Series: Materials Science and Engineering, 2019, 475, 012033.	0.6	0
207	Multiperiodic Spin Precession of the Optically Induced Spin Polarization in \$\${hbox {Al}}_{x}{hbox {Ga}}_{1-x}{hbox {As/AlAs}}\$\$ Single Quantum Well. Iranian Journal of Science and Technology, Transaction A: Science, 2020, 44, 549-555.	1.5	0
208	AlSb/InAs Heterostructures for Microwave Transistors. Technical Physics Letters, 2021, 47, 139-142.	0.7	0
209	10.1007/s11448-008-3007-z. , 2010, 87, 150.		0
210	New Type of Heterostructures for Powerful pHEMT Transistors. Optoelectronics, Instrumentation and Data Processing, 2020, 56, 478-484.	0.6	0
211	A Millimeter-Wave Field-Effect Transistor Based on a Pseudomorphic Heterostructure with an Additional Potential Barrier. Technical Physics Letters, 2021, 47, 329-332.	0.7	0
212	Vertical-Cavity Surface-Emitting Lasers for Miniature Quantum Frequency Standards. Optoelectronics, Instrumentation and Data Processing, 2021, 57, 445-450.	0.6	0