Rui Pereira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2668938/publications.pdf

Version: 2024-02-01

		840776 1199594	
12	750	11	12
papers	citations	h-index	g-index
14	14	14	1141
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Metabolic network remodelling enhances yeast's fitness on xylose using aerobic glycolysis. Nature Catalysis, 2021, 4, 783-796.	34.4	23
2	Elucidating aromatic acid tolerance at low pH in <i>Saccharomyces cerevisiae</i> using adaptive laboratory evolution. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 27954-27961.	7.1	40
3	Stress-induced expression is enriched for evolutionarily young genes in diverse budding yeasts. Nature Communications, 2020, 11, 2144.	12.8	24
4	Multidimensional engineering of Saccharomyces cerevisiae for efficient synthesis of medium-chain fatty acids. Nature Catalysis, 2020, 3, 64-74.	34.4	80
5	Nitrogen limitation reveals large reserves in metabolic and translational capacities of yeast. Nature Communications, 2020, 11, 1881.	12.8	51
6	Adaptive laboratory evolution of tolerance to dicarboxylic acids in Saccharomyces cerevisiae. Metabolic Engineering, 2019, 56, 130-141.	7.0	63
7	Turnover Dependent Phenotypic Simulation: A Quantitative Constraint-Based Simulation Method That Accommodates All Main Strain Design Strategies. ACS Synthetic Biology, 2019, 8, 976-988.	3.8	1
8	Complete genomic and transcriptional landscape analysis using third-generation sequencing: a case study of Saccharomyces cerevisiae CEN.PK113-7D. Nucleic Acids Research, 2018, 46, e38-e38.	14.5	116
9	Reprogramming Yeast Metabolism from Alcoholic Fermentation to Lipogenesis. Cell, 2018, 174, 1549-1558.e14.	28.9	215
10	Improving the flux distributions simulated with genome-scale metabolic models of Saccharomyces cerevisiae. Metabolic Engineering Communications, 2016, 3, 153-163.	3.6	51
11	Production of \hat{l}^2 -ionone by combined expression of carotenogenic and plant CCD1 genes in Saccharomyces cerevisiae. Microbial Cell Factories, 2015, 14, 84.	4.0	71
12	Optimization Approaches for the <i>In Silico</i> Discovery of Optimal Targets for Gene Over/Underexpression. Journal of Computational Biology, 2012, 19, 102-114.	1.6	14