Sunantha Ketnawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2668915/publications.pdf

Version: 2024-02-01

35 1,275 22 32 32 papers citations h-index g-index

35 35 35 1461 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Changes in bioactive compounds and antioxidant activity of plant-based foods by gastrointestinal digestion: a review. Critical Reviews in Food Science and Nutrition, 2022, 62, 4684-4705.	5.4	41
2	Effect of digestive enzymes and pH on variation of bioavailability of green tea during simulated in vitro gastrointestinal digestion. Food Science and Human Wellness, 2022, 11, 669-675.	2.2	20
3	Comparative Study of the Physico- and Biochemical Properties of Two Types of Salted Japanese Apricot (Prunus mume) Pickles. Frontiers in Sustainable Food Systems, 2021, 5, .	1.8	5
4	Effect of in vitro digestion on bioactive compounds, antioxidant and antimicrobial activities of coffee (Coffea arabica L.) pulp aqueous extract. Food Chemistry, 2021, 348, 129094.	4.2	27
5	In vitro protein digestibility and biochemical characteristics of soaked, boiled and fermented soybeans. Scientific Reports, 2021, 11, 14257.	1.6	32
6	Low intensity of high pressure processing increases extractable recovery of polyphenols and antioxidant activities of non-astringent persimmon fruit. LWT - Food Science and Technology, 2021, 151, 112162.	2.5	4
7	Effect of heat-moisture treatment to raw paddy rice (Oryza sativa L.) on cooked rice properties. Journal of Future Foods, 2021, 1, 179-186.	2.0	O
8	Influence of Commercial Protease and Drying Process on Antioxidant and Physicochemical Properties of Chicken Breast Protein Hydrolysates. Foods, 2021, 10, 2994.	1.9	4
9	In vitro gastrointestinal digestion of crisphead lettuce: Changes in bioactive compounds and antioxidant potential. Food Chemistry, 2020, 311, 125885.	4.2	40
10	Impact of particle size of pulverized citrus peel tissue on changes in antioxidant properties of digested fluids during simulated in vitro digestion. Food Science and Human Wellness, 2020, 9, 58-63.	2.2	14
11	Extraction, Characterization, and Application of Agricultural and Food Processing By-Products. , 2020, , .		4
12	In vitro examination of starch digestibility of Saba banana [Musa â€̃saba'(Musa acuminata × Mu	sa) Ti ETQ	q0 0,0 rgBT /C
13	Bio-properties of Saba banana (Musa â€~saba', ABB Group): Influence of maturity and changes during simulated in vitro gastrointestinal digestion. Scientific Reports, 2020, 10, 6701.	1.6	7
14	Sweet potato microstructure, starch digestion, and glycemic index., 2019, , 243-272.		2
15	Selective separation and characterisation of dual <scp>ACE</scp> and <scp>DPP</scp> â€ <scp>IV</scp> inhibitory peptides from rainbow trout (<i>Oncorhynchus mykiss</i>) protein hydrolysates. International Journal of Food Science and Technology, 2019, 54, 1062-1073.	1.3	42
16	Evaluation of protein digestibility of fermented soybeans and changes in biochemical characteristics of digested fractions. Journal of Functional Foods, 2019, 52, 640-647.	1.6	61
17	Changes on antioxidant activity of microwave-treated protein hydrolysates after simulated gastrointestinal digestion: Purification and identification. Food Chemistry, 2018, 254, 36-46.	4.2	75
18	Impact of food structure and cell matrix on digestibility of plant-based food. Current Opinion in Food Science, 2018, 19, 36-41.	4.1	50

#	Article	IF	Citations
19	Electro-membrane fractionation of antioxidant peptides from protein hydrolysates of rainbow trout (Oncorhynchus mykiss) byproducts. Innovative Food Science and Emerging Technologies, 2018, 45, 122-131.	2.7	42
20	Effect of Microwave Treatments on Antioxidant Activity and Antigenicity of Fish Frame Protein Hydrolysates. Food and Bioprocess Technology, 2017, 10, 582-591.	2.6	71
21	Fish skin gelatin hydrolysates produced by visceral peptidase and bovine trypsin: Bioactivity and stability. Food Chemistry, 2017, 215, 383-390.	4.2	81
22	Physical, chemical, and microbiological properties of fish tofu containing shrimp hydrolysate. Fisheries Science, 2016, 82, 379-389.	0.7	16
23	Obtaining of functional components from cooked shrimp (Penaeus vannamei) by enzymatic hydrolysis. Food Bioscience, 2016, 15, 55-63.	2.0	28
24	Chemical properties and nutritional factors of pressed-cake from tea and sacha inchi seeds. Food Bioscience, 2016, 15, 64-71.	2.0	33
25	Gelatin hydrolysates from farmed Giant catfish skin using alkaline proteases and its antioxidative function of simulated gastro-intestinal digestion. Food Chemistry, 2016, 192, 34-42.	4.2	60
26	Extraction and Biochemical Characterization of Peptidases from Giant Catfish Viscera by Aqueous Two-Phase System. Journal of Food Biochemistry, 2015, 39, 429-438.	1,2	4
27	Thermoseparating Aqueous Two-Phase System for the Separation of Alkaline Proteases from Fish Viscera. Separation Science and Technology, 2014, 49, 2158-2168.	1.3	7
28	Characterization of acid and alkaline proteases from viscera of farmed giant catfish. Food Bioscience, 2014, 6, 9-16.	2.0	32
29	Three-phase partitioning and proteins hydrolysis patterns of alkaline proteases derived from fish viscera. Separation and Purification Technology, 2014, 132, 174-181.	3.9	38
30	Enhanced recovery of alkaline protease from fish viscera by phase partitioning and its application. Chemistry Central Journal, 2013, 7, 79.	2.6	34
31	Pineapple wastes: A potential source for bromelain extraction. Food and Bioproducts Processing, 2012, 90, 385-391.	1.8	174
32	Extraction of bromelain from pineapple peels. Food Science and Technology International, 2011, 17, 395-402.	1.1	46
33	Application of Bromelain Extract for Muscle Foods Tenderization. Food and Nutrition Sciences (Print), 2011, 02, 393-401.	0.2	69
34	Aqueous two-phase extraction of bromelain from pineapple peels (â€~Phu Lae' cultv.) and its biochemical properties. Food Science and Biotechnology, 2011, 20, 1219-1226.	1,2	26
35	Two phase partitioning and collagen hydrolysis of bromelain from pineapple peel Nang Lae cultivar. Biochemical Engineering Journal, 2010, 52, 205-211.	1.8	73

3