
Shi-Qing Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2668848/publications.pdf

Version: 2024-02-01

SHI-OINC WANC

#	Article	IF	CITATIONS
1	New theoretical considerations in polymer rheology: Elastic breakdown of chain entanglement network. Journal of Chemical Physics, 2007, 127, 064903.	3.0	163
2	Direct Visualization of Continuous Simple Shear in Non-Newtonian Polymeric Fluids. Physical Review Letters, 2006, 96, 016001.	7.8	132
3	Why Is Crystalline Poly(lactic acid) Brittle at Room Temperature?. Macromolecules, 2019, 52, 5429-5441.	4.8	114
4	Homogeneous Shear, Wall Slip, and Shear Banding of Entangled Polymeric Liquids in Simple-Shear Rheometry: A Roadmap of Nonlinear Rheology. Macromolecules, 2011, 44, 183-190.	4.8	113
5	Banding in Simple Steady Shear of Entangled Polymer Solutions. Macromolecules, 2008, 41, 2663-2670.	4.8	111
6	Relaxation Dynamics in Mixtures of Long and Short Chains:Â Tube Dilation and Impeded Curvilinear Diffusion. Macromolecules, 2003, 36, 5355-5371.	4.8	92
7	Nonlinear Flow Behavior of Entangled Polymer Solutions:Â Yieldlike Entanglementâ^'Disentanglement Transition. Macromolecules, 2004, 37, 9083-9095.	4.8	89
8	Elastic Breakup in Uniaxial Extension of Entangled Polymer Melts. Physical Review Letters, 2007, 99, 237801.	7.8	83
9	Use of Particle-Tracking Velocimetry and Flow Birefringence To Study Nonlinear Flow Behavior of Entangled Wormlike Micellar Solution:  From Wall Slip, Bulk Disentanglement to Chain Scission. Macromolecules, 2008, 41, 1455-1464.	4.8	83
10	Steady state measurements in stress plateau region of entangled polymer solutions: Controlled-rate and controlled-stress modes. Journal of Rheology, 2008, 52, 957-980.	2.6	77
11	A phenomenological molecular model for yielding and brittle-ductile transition of polymer glasses. Journal of Chemical Physics, 2014, 141, 094905.	3.0	75
12	How Melt-Stretching Affects Mechanical Behavior of Polymer Glasses. Macromolecules, 2012, 45, 6719-6732.	4.8	70
13	New Experiments for Improved Theoretical Description of Nonlinear Rheology of Entangled Polymers. Macromolecules, 2013, 46, 3147-3159.	4.8	70
14	Step Shear of Entangled Linear Polymer Melts: New Experimental Evidence for Elastic Yielding. Macromolecules, 2009, 42, 6261-6269.	4.8	69
15	Shear banding or not in entangled DNA solutions depending on the level of entanglement. Journal of Rheology, 2009, 53, 73-83.	2.6	69
16	Observations of Wall Slip and Shear Banding in an Entangled DNA Solution. Macromolecules, 2008, 41, 2644-2650.	4.8	67
17	Exploring stress overshoot phenomenon upon startup deformation of entangled linear polymeric liquids. Journal of Rheology, 2009, 53, 1389-1401.	2.6	62
18	What Are the Origins of Stress Relaxation Behaviors in Step Shear of Entangled Polymer Solutions?. Macromolecules, 2007, 40, 8031-8039.	4.8	60

SHI-QING WANG

#	Article	IF	CITATIONS
19	Universal scaling characteristics of stress overshoot in startup shear of entangled polymer solutions. Journal of Rheology, 2008, 52, 681-695.	2.6	56
20	Fast flow behavior of highly entangled monodisperse polymers. Rheologica Acta, 1998, 37, 415-423.	2.4	55
21	Universal scaling behavior in startup shear of entangled linear polymer melts. Journal of Rheology, 2009, 53, 617-629.	2.6	51
22	Exploring the transition from wall slip to bulk shearing banding in well-entangled DNA solutions. Soft Matter, 2009, 5, 780-789.	2.7	48
23	Mechanisms for different failure modes in startup uniaxial extension: Tensile (rupture-like) failure and necking. Journal of Rheology, 2013, 57, 223-248.	2.6	47
24	Large amplitude oscillatory shear behavior of entangled polymer solutions: Particle tracking velocimetric investigation. Journal of Rheology, 2008, 52, 341-358.	2.6	46
25	Exploring Origins of Interfacial Yielding and Wall Slip in Entangled Linear Melts during Shear or after Shear Cessation. Macromolecules, 2009, 42, 2222-2228.	4.8	46
26	Salient Features in Uniaxial Extension of Polymer Melts and Solutions: Progressive Loss of Entanglements, Yielding, Non-Gaussian Stretching, and Rupture. Macromolecules, 2011, 44, 5427-5435.	4.8	43
27	Interfacial stick-slip transition in simple shear of entangled melts. Journal of Rheology, 2006, 50, 641-654.	2.6	38
28	On Chain Statistics and Entanglement of Flexible Linear Polymer Melts. Macromolecules, 2007, 40, 8684-8694.	4.8	38
29	Shear banding in entangled polymers in the micron scale gap: a confocal-rheoscopic study. Soft Matter, 2015, 11, 8058-8068.	2.7	38
30	Basic characteristics of uniaxial extension rheology: Comparing monodisperse and bidisperse polymer melts. Journal of Rheology, 2011, 55, 1247-1270.	2.6	37
31	A Coherent Description of Nonlinear Flow Behavior of Entangled Polymers as Related to Processing and Numerical Simulations. Macromolecular Materials and Engineering, 2007, 292, 15-22.	3.6	35
32	ls shear banding a metastable property of well-entangled polymer solutions?. Journal of Rheology, 2012, 56, 1413-1428.	2.6	34
33	Crazing and yielding in glassy polymers of high molecular weight. Polymer, 2020, 197, 122445.	3.8	33
34	Rupture in rapid uniaxial extension of linear entangled melts. Rheologica Acta, 2010, 49, 1179-1185.	2.4	31
35	How polymeric solvents control shear inhomogeneity in large deformations of entangled polymer mixtures. Rheologica Acta, 2011, 50, 97-105.	2.4	27
36	Elastic Yielding in Cold Drawn Polymer Glasses Well below the Glass Transition Temperature. Physical Review Letters, 2013, 110, 065506.	7.8	26

SHI-QING WANG

#	Article	IF	CITATIONS
37	Nonlinear rheology of entangled polymers at turning point. Soft Matter, 2015, 11, 1454-1458.	2.7	26
38	Crazing and strain localization of polycarbonate glass in creep. Polymer, 2013, 54, 3363-3369.	3.8	25
39	Elastic Yielding after Cold Drawing of Ductile Polymer Glasses. Macromolecules, 2014, 47, 3661-3671.	4.8	25
40	Polystyrene Glasses under Compression: Ductile and Brittle Responses. ACS Macro Letters, 2015, 4, 1072-1076.	4.8	24
41	Mapping Brittle and Ductile Behaviors of Polymeric Glasses under Large Extension. ACS Macro Letters, 2015, 4, 1110-1113.	4.8	23
42	Strain Hardening During Uniaxial Compression of Polymer Glasses. ACS Macro Letters, 2014, 3, 784-787.	4.8	19
43	Nonlinear stress relaxation behavior of ductile polymer glasses from large extension and compression. Polymer, 2015, 81, 129-139.	3.8	19
44	Chain Network: Key to the Ductile Behavior of Polymer Glasses. Macromolecules, 2018, 51, 1666-1673.	4.8	19
45	Elastic yielding after step shear and during LAOS in the absence of meniscus failure. Rheologica Acta, 2010, 49, 985-991.	2.4	17
46	Brittleâ€ductile transition in uniaxial compression of polymer glasses. Journal of Polymer Science, Part B: Polymer Physics, 2019, 57, 758-770.	2.1	17
47	How and Why Polymer Glasses Lose Their Ductility Due to Plasticizers. Macromolecules, 2017, 50, 2024-2032.	4.8	14
48	Inducing nano-confined crystallization in PLLA and PET by elastic melt stretching. Soft Matter, 2021, 17, 1457-1462.	2.7	14
49	Breakdown of Time–Temperature Equivalence in Startup Uniaxial Extension of Entangled Polymer Melts. Macromolecules, 2013, 46, 4151-4159.	4.8	13
50	Rheology of Entangled Polymers Not Far above Glass Transition Temperature: Transient Elasticity and Intersegmental Viscous Stress. Macromolecules, 2014, 47, 5839-5850.	4.8	13
51	Entangled Linear Polymer Solutions at High Shear: From Strain Softening to Hardening. Macromolecules, 2016, 49, 9647-9654.	4.8	11
52	Delineating nature of stress responses during ductile uniaxial extension of polycarbonate glass. Polymer, 2016, 89, 143-153.	3.8	11
53	Examining an Alternative Molecular Mechanism To Toughen Glassy Polymers. Macromolecules, 2020, 53, 323-333.	4.8	11
54	From Wall Slip to Bulk Shear Banding in Entangled Polymer Solutions. Macromolecular Chemistry and Physics, 2019, 220, 1800327.	2.2	9

SHI-QING WANG

#	Article	IF	CITATIONS
55	Letter to the Editor: Melt rupture unleashed by few chain scission events in fully stretched strands. Journal of Rheology, 2019, 63, 105-107.	2.6	8
56	Origin of mechanical stress and rising internal energy during fast uniaxial extension of SBR melts. Polymer, 2017, 124, 68-77.	3.8	7
57	Strain localization during squeeze of an entangled polymer melt under constant force. Journal of Rheology, 2018, 62, 491-499.	2.6	7
58	Double Yielding in Deformation of Semicrystalline Polymers. Macromolecular Chemistry and Physics, 2020, 221, 2000151.	2.2	7
59	Experiments-inspired molecular modeling of yielding and failure of polymer glasses under large deformation. , 2016, , 395-424.		7
60	Watching shear thinning in creep: Entanglement-disentanglement transition. Polymer, 2017, 125, 254-264.	3.8	6
61	Exploring rheological responses to uniaxial stretching of various entangled polyisoprene melts. Journal of Rheology, 2019, 63, 763-771.	2.6	6
62	Effects of Molecular Weight Reduction on Brittle–Ductile Transition and Elastic Yielding Due to Noninvasive γ Irradiation on Polymer Glasses. Macromolecules, 2017, 50, 2447-2455.	4.8	4
63	Uncommon nonlinear rheological phenomenology in uniaxial extension of polystyrene solutions and melts. Soft Matter, 2020, 16, 3705-3716.	2.7	4
64	Characterizing effects of fast melt deformation on entangled polymers in their glassy state. Journal of Chemical Physics, 2019, 151, 124906.	3.0	3
65	Nanoconfined Crystallization in Poly(lactic acid) (PLA) and Poly(ethylene terephthalate) (PET) Induced by Various Forms of Premeltâ€Deformation. Macromolecular Rapid Communications, 2023, 44, .	3.9	3
66	Inhomogeneous chain relaxation of entangled polymer melts from stepwise planar extension in absence of free surface. Journal of Rheology, 2020, 64, 1251-1262.	2.6	2