
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/266883/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lignin Nanoparticle as a Novel Green Carrier for the Efficient Delivery of Resveratrol. ACS Sustainable Chemistry and Engineering, 2017, 5, 8241-8249.	6.7	276
2	Biomass Fractionation and Lignin Fractionation towards Lignin Valorization. ChemSusChem, 2020, 13, 4284-4295.	6.8	188
3	Antibacterial and hemostatic hydrogel via nanocomposite from cellulose nanofibers. Carbohydrate Polymers, 2018, 195, 63-70.	10.2	158
4	A simple and effective approach to fabricate lignin nanoparticles with tunable sizes based on lignin fractionation. Green Chemistry, 2020, 22, 2011-2017.	9.0	140
5	All-Lignin-Based Hydrogel with Fast pH-Stimuli Responsiveness for Mechanical Switching and Actuation. Chemistry of Materials, 2020, 32, 4324-4330.	6.7	136
6	Ligninâ€Based Micro―and Nanomaterials and their Composites in Biomedical Applications. ChemSusChem, 2020, 13, 4266-4283.	6.8	130
7	Lignin-Based Nanoparticles Stabilized Pickering Emulsion for Stability Improvement and Thermal-Controlled Release of <i>trans</i> -Resveratrol. ACS Sustainable Chemistry and Engineering, 2019, 7, 13497-13504.	6.7	103
8	Novel lignin-based phenolic nanosphere supported palladium nanoparticles with highly efficient catalytic performance and good reusability. Industrial Crops and Products, 2020, 145, 112164.	5.2	94
9	A lignin-containing cellulose hydrogel for lignin fractionation. Green Chemistry, 2019, 21, 5222-5230.	9.0	89
10	Conductive cellulose nanofibrils-reinforced hydrogels with synergetic strength, toughness, self-adhesion, flexibility and adjustable strain responsiveness. Carbohydrate Polymers, 2020, 250, 117010.	10.2	74
11	Fabrication of thermo- and pH-sensitive cellulose nanofibrils-reinforced hydrogel with biomass nanoparticles. Carbohydrate Polymers, 2019, 215, 289-295.	10.2	68
12	A Facile Preparation of Super Longâ€Term Stable Lignin Nanoparticles from Black Liquor. ChemSusChem, 2019, 12, 5239-5245.	6.8	67
13	A novel functional lignin-based filler for pyrolysis and feedstock recycling of poly(<scp>l</scp> -lactide). Green Chemistry, 2018, 20, 1777-1783.	9.0	65
14	Green and stable piezoresistive pressure sensor based on lignin-silver hybrid nanoparticles/polyvinyl alcohol hydrogel. International Journal of Biological Macromolecules, 2021, 176, 78-86.	7.5	60
15	A well-defined lignin-based filler for tuning the mechanical properties of polymethyl methacrylate. Green Chemistry, 2021, 23, 2329-2335.	9.0	56
16	Self-assembled targeted nanoparticles based on transferrin-modified eight-arm-polyethylene glycol–dihydroartemisinin conjugate. Scientific Reports, 2016, 6, 29461.	3.3	53
17	Mussel-Inspired Cellulose-Based Nanocomposite Fibers for Adsorption and Photocatalytic Degradation. ACS Sustainable Chemistry and Engineering, 2018, 6, 15756-15763.	6.7	52
18	Fabrication of high-performance poly(l-lactic acid)/lignin-graft-poly(d-lactic acid) stereocomplex films. Materials Science and Engineering C, 2017, 80, 397-403.	7.3	50

#	Article	IF	CITATIONS
19	Study on thermal degradation kinetics of cellulose-graft-poly(l-lactic acid) by thermogravimetric analysis. Polymer Degradation and Stability, 2014, 99, 233-239.	5.8	49
20	Cellulose-assisted construction of high surface area Z-scheme C-doped g-C3N4/WO3 for improved tetracycline degradation. Carbohydrate Polymers, 2021, 255, 117343.	10.2	49
21	Self-assembled targeted folate-conjugated eight-arm-polyethylene glycol–betulinic acid nanoparticles for co-delivery of anticancer drugs. Journal of Materials Chemistry B, 2015, 3, 3754-3766.	5.8	47
22	Improving dispersion stability of hydrochloric acid hydrolyzed cellulose nano-crystals. Carbohydrate Polymers, 2019, 222, 115037.	10.2	47
23	Green mussel-inspired lignin magnetic nanoparticles with high adsorptive capacity and environmental friendliness for chromium(III) removal. International Journal of Biological Macromolecules, 2019, 132, 478-486.	7.5	47
24	Novel Multiarm Polyethylene glycol-Dihydroartemisinin Conjugates Enhancing Therapeutic Efficacy in Non-Small-Cell Lung Cancer. Scientific Reports, 2014, 4, 5871.	3.3	46
25	Ginsenoside nanoparticle: a new green drug delivery system. Journal of Materials Chemistry B, 2016, 4, 529-538.	5.8	43
26	High efficient recovery of L-lactide with lignin-based filler by thermal degradation. Industrial Crops and Products, 2020, 143, 111954.	5.2	43
27	A novel self-assembled targeted nanoparticle platform based on carboxymethylcellulose co-delivery of anticancer drugs. Journal of Materials Chemistry B, 2015, 3, 6605-6617.	5.8	41
28	Reversible photo-controlled release of bovine serum albumin by azobenzene-containing cellulose nanofibrils-based hydrogel. Advanced Composites and Hybrid Materials, 2019, 2, 462-470.	21.1	41
29	A multifunctional nanocellulose-based hydrogel for strain sensing and self-powering applications. Carbohydrate Polymers, 2021, 268, 118210.	10.2	40
30	Simple and green fabrication of AgCl/Ag-cellulose paper with antibacterial and photocatalytic activity. Carbohydrate Polymers, 2017, 174, 450-455.	10.2	37
31	Combined bactericidal process of lignin and silver in a hybrid nanoparticle on E. coli. Advanced Composites and Hybrid Materials, 2022, 5, 1841-1851.	21.1	36
32	Water soluble multiarm-polyethylene glycol–betulinic acid prodrugs: design, synthesis, and in vivo effectiveness. Polymer Chemistry, 2014, 5, 5775-5783.	3.9	35
33	Cellulose-graft-poly(<scp>l</scp> -lactic acid) nanoparticles for efficient delivery of anti-cancer drugs. Journal of Materials Chemistry B, 2014, 2, 6749-6757.	5.8	34
34	Lignin-containing cellulose nanocrystals/sodium alginate beads as highly effective adsorbents for cationic organic dyes. International Journal of Biological Macromolecules, 2019, 139, 640-646.	7.5	34
35	Drug-loaded poly(L-lactide)/lignin stereocomplex film for enhancing stability and sustained release of trans-resveratrol. International Journal of Biological Macromolecules, 2018, 119, 1129-1136.	7.5	32
36	Self-assembled PEG–carboxymethylcellulose nanoparticles/α-cyclodextrin hydrogels for injectable and thermosensitive drug delivery. RSC Advances, 2017, 7, 2905-2912.	3.6	30

#	Article	IF	CITATIONS
37	Cellulose-graft-poly(methyl methacrylate) nanoparticles with high biocompatibility for hydrophobic anti-cancer drug delivery. Materials Letters, 2017, 207, 213-216.	2.6	30
38	Tandem Character of Liquid Hot Water and Deep Eutectic Solvent to Enhance Lignocellulose Deconstruction. ChemSusChem, 2021, 14, 2740-2748.	6.8	30
39	Recent Advances on Cellulose-Based Nano-Drug Delivery Systems: Design of Prodrugs and Nanoparticles. Current Medicinal Chemistry, 2019, 26, 2410-2429.	2.4	30
40	Self-assembled serum albumin–poly(<scp>l</scp> -lactic acid) nanoparticles: a novel nanoparticle platform for drug delivery in cancer. RSC Advances, 2015, 5, 15612-15620.	3.6	29
41	Lignin-graft-poly(acrylic acid) for enhancement of heavy metal ion biosorption. Journal of Materials Science, 2017, 52, 13689-13699.	3.7	27
42	Injectable and thermosensitive supramolecular hydrogels by inclusion complexation between binary-drug loaded micelles and α-cyclodextrin. Materials Science and Engineering C, 2017, 76, 966-974.	7.3	26
43	Size-controlled lignin nanoparticles for tuning the mechanical properties of poly(vinyl alcohol). Industrial Crops and Products, 2021, 172, 114012.	5.2	26
44	Lignin nanoparticles for hydrogel-based pressure sensor. Industrial Crops and Products, 2022, 176, 114366.	5.2	23
45	A surfactant template-assisted strategy for synthesis of ZIF-8 hollow nanospheres. Materials Letters, 2015, 161, 682-685.	2.6	22
46	pH-Responsive Lignin Hydrogel for Lignin Fractionation. ACS Sustainable Chemistry and Engineering, 2021, 9, 13972-13978.	6.7	21
47	"Nano-Ginseng―for Enhanced Cytotoxicity AGAINST Cancer Cells. International Journal of Molecular Sciences, 2018, 19, 627.	4.1	19
48	A functional lignin-based nanofiller for flame-retardant blend. International Journal of Biological Macromolecules, 2021, 190, 390-395.	7.5	19
49	A lignocellulose-based nanocomposite hydrogel with pH-sensitive and potent antibacterial activity for wound healing. International Journal of Biological Macromolecules, 2021, 191, 1249-1254.	7.5	19
50	Ligninâ€Containing Selfâ€Nanoemulsifying Drug Delivery System for Enhance Stability and Oral Absorption of <i>trans</i> â€Resveratrol. Particle and Particle Systems Characterization, 2018, 35, 1700447.	2.3	18
51	Multifunctional pHâ€Responsive Sprayable Hydrogel Based on Chitosan and Ligninâ€Based Nanoparticles. Particle and Particle Systems Characterization, 2018, 35, 1800145.	2.3	18
52	Towards a waste-free biorefinery: A cascade valorization of bamboo for efficient fractionation, enzymatic hydrolysis and lithium-sulfur cathode. Industrial Crops and Products, 2020, 149, 112364.	5.2	18
53	Alkylation modification for lignin color reduction and molecular weight adjustment. International Journal of Biological Macromolecules, 2022, 201, 400-410.	7.5	18
54	Degradation of graft polymer and blend based on cellulose and poly(Lâ€lactide). Journal of Applied Polymer Science, 2013, 130, 2257-2264.	2.6	17

#	Article	IF	CITATIONS
55	Enabling dual valorization of lignocellulose by fluorescent lignin carbon dots and biochar-supported persulfate activation: Towards waste-treats-pollutant. Journal of Hazardous Materials, 2022, 435, 129072.	12.4	17
56	Fabrication of ZIF-8@super-macroporous poly(glycidyl methacrylate) microspheres. Inorganic Chemistry Communication, 2014, 50, 65-69.	3.9	16
57	Design, synthesis and in vivo antitumor efficacy of novel eight-arm-polyethylene glycol–pterostilbene prodrugs. RSC Advances, 2015, 5, 51592-51599.	3.6	15
58	A self-assembled nanoparticle platform based on poly(ethylene glycol)–diosgenin conjugates for co-delivery of anticancer drugs. RSC Advances, 2015, 5, 74828-74834.	3.6	14
59	A novel self-assembled pH-sensitive targeted nanoparticle platform based on antibody–4arm-polyethylene glycol–pterostilbene conjugates for co-delivery of anticancer drugs. Journal of Materials Chemistry B, 2018, 6, 656-665.	5.8	11
60	A scalable <i>waste-free</i> biorefinery inspires revenue from holistic lignocellulose valorization. Green Chemistry, 2021, 23, 6008-6019.	9.0	11
61	A Rapid and Reversible pH Control Process for the Formation and Dissociation of Lignin Nanoparticles. ChemSusChem, 2022, 15, e202200449.	6.8	10
62	A flow-through reactor for fast fractionation and production of structure-preserved lignin. Industrial Crops and Products, 2021, 164, 113350.	5.2	9
63	The Synthesis of Cellulose-graft-poly (L-lactide) by Ring-opening Polymerization and the Study of Its Degradability. Bulletin of the Korean Chemical Society, 2012, 33, 4122-4126.	1.9	9
64	Research Progress on the Preparation and High-Value Utilization of Lignin Nanoparticles. International Journal of Molecular Sciences, 2022, 23, 7254.	4.1	9
65	A Facile Preparation of Super Longâ€Term Stable Lignin Nanoparticles from Black Liquor. ChemSusChem, 2019, 12, 5216-5216.	6.8	7
66	Lignin fractionation-inspired carbon dots to enable trimodule fluorescent sensing of pH, silver ion and cysteine. Industrial Crops and Products, 2022, 185, 115127.	5.2	7
67	Hydrothermal method-assisted synthesis of self-crosslinked all-lignin-based hydrogels. International Journal of Biological Macromolecules, 2022, 216, 670-675.	7.5	7
68	Characterization of adsorbent microspheres of cellulose and acrylic acid and its adsorption behaviors for metal ions. Desalination and Water Treatment, 2016, 57, 5821-5827.	1.0	4
69	Multifunctional Lignin-Silver Nanoparticles for Accelerating Polymerization and Cross-Linking of Sodium Polyacrylate. ACS Applied Polymer Materials, 2022, 4, 2140-2148.	4.4	3
70	Dissolution of Cellulose and Synthesis of Cellulose-Graft-Poly (L-Lactide) via Ring-Opening Polymerization in an Ionic Liquid. Advanced Materials Research, 0, 476-478, 1897-1900.	0.3	2
71	Synthesis of Cellulose-Graft-Poly (L-Lactide) via Ring-Opening Polymerization and Degradability Research. Advanced Materials Research, 0, 652-654, 398-401.	0.3	1
79	Lignin-based materials for drug and gene delivery 2021, 327-370		1

#	Article	IF	CITATIONS
73	Novel and Efficient Lignin Fractionation Processes for Tailing Lignin-Based Materials. , 2021, , 363-387.		Ο