Sara E Wells

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2668540/publications.pdf

Version: 2024-02-01

SADA F M/FLIS

#	Article	IF	CITATIONS
1	Nonhuman primates' tissue banks: resources for all model organism research. Mammalian Genome, 2022, 33, 241-243.	2.2	0
2	Neuroplastin genetically interacts with Cadherin 23 and the encoded isoform Np55 is sufficient for cochlear hair cell function and hearing. PLoS Genetics, 2022, 18, e1009937.	3.5	4
3	Extensive identification of genes involved in congenital and structural heart disorders and cardiomyopathy. , 2022, 1, 157-173.		22
4	Perspectives on Cognitive Phenotypes and Models of Vascular Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2022, , 101161ATVBAHA122317395.	2.4	4
5	<i>Ap2s1</i> mutation causes hypercalcaemia in mice and impairs interaction between calcium-sensing receptor and adaptor protein-2. Human Molecular Genetics, 2021, 30, 880-892.	2.9	10
6	LAMA: automated image analysis for the developmental phenotyping of mouse embryos. Development (Cambridge), 2021, 148, .	2.5	7
7	INFRAFRONTIER quality principles in systemic phenotyping. Mammalian Genome, 2021, , 1.	2.2	3
8	Comprehensive phenotypic analysis of the Dp1Tyb mouse strain reveals a broad range of Down syndrome-related phenotypes. DMM Disease Models and Mechanisms, 2021, 14, .	2.4	17
9	Variability in Genome Editing Outcomes: Challenges for Research Reproducibility and Clinical Safety. Molecular Therapy, 2020, 28, 1422-1431.	8.2	34
10	Forward genetics identifies a novel sleep mutant with sleep state inertia and REM sleep deficits. Science Advances, 2020, 6, eabb3567.	10.3	15
11	Phenotyping in Mice Using Continuous Home Cage Monitoring and Ultrasonic Vocalization Recordings. Current Protocols in Mouse Biology, 2020, 10, e80.	1.2	11
12	The occurrence of tarsal injuries in male mice of C57BL/6N substrains in multiple international mouse facilities. PLoS ONE, 2020, 15, e0230162.	2.5	1
13	Ageâ€related changes in the biophysical and morphological characteristics of mouse cochlear outer hair cells. Journal of Physiology, 2020, 598, 3891-3910.	2.9	29
14	The Deep Genome Project. Genome Biology, 2020, 21, 18.	8.8	30
15	Human and mouse essentiality screens as a resource for disease gene discovery. Nature Communications, 2020, 11, 655.	12.8	64
16	Mouse mutant phenotyping at scale reveals novel genes controlling bone mineral density. PLoS Genetics, 2020, 16, e1009190.	3.5	19
17	Clarinâ€2 is essential for hearing by maintaining stereocilia integrity and function. EMBO Molecular Medicine, 2019, 11, e10288	6.9	20
18	Loss of Bardet-Biedl syndrome proteins causes synaptic aberrations in principal neurons. PLoS Biology, 2019, 17, e3000414.	5.6	17

SARA E WELLS

#	Article	IF	CITATIONS
19	Drug safety Africa: An overview of safety pharmacology & toxicology in South Africa. Journal of Pharmacological and Toxicological Methods, 2019, 98, 106579.	0.7	1
20	Loss of <i>Frrs1l</i> disrupts synaptic AMPA receptor function, and results in neurodevelopmental, motor, cognitive and electrographical abnormalities. DMM Disease Models and Mechanisms, 2019, 12, .	2.4	22
21	Male mice lacking ADAMTS-16 are fertile but exhibit testes of reduced weight. Scientific Reports, 2019, 9, 17195.	3.3	8
22	An <i>N</i> -Ethyl- <i>N</i> -Nitrosourea (ENU)-Induced Tyr265Stop Mutation of the DNA Polymerase Accessory Subunit Gamma 2 (<i>Polg2</i>) Is Associated With Renal Calcification in Mice. Journal of Bone and Mineral Research, 2019, 34, 497-507.	2.8	3
23	High-throughput mouse phenomics for characterizing mammalian gene function. Nature Reviews Genetics, 2018, 19, 357-370.	16.3	78
24	Identification of genetic elements in metabolism by high-throughput mouse phenotyping. Nature Communications, 2018, 9, 288.	12.8	59
25	Loss of p300 and CBP disrupts histone acetylation at the mouse Sry promoter and causes XY gonadal sex reversal. Human Molecular Genetics, 2018, 27, 190-198.	2.9	39
26	Assessing mouse behaviour throughout the light/dark cycle using automated in-cage analysis tools. Journal of Neuroscience Methods, 2018, 300, 37-47.	2.5	128
27	Identification of genes required for eye development by high-throughput screening of mouse knockouts. Communications Biology, 2018, 1, 236.	4.4	37
28	Analysis of motor dysfunction in Down Syndrome reveals motor neuron degeneration. PLoS Genetics, 2018, 14, e1007383.	3.5	29
29	Analysing the outcome of CRISPR-aided genome editing in embryos: Screening, genotyping and quality control. Methods, 2017, 121-122, 68-76.	3.8	72
30	A large scale hearing loss screen reveals an extensive unexplored genetic landscape for auditory dysfunction. Nature Communications, 2017, 8, 886.	12.8	116
31	Nâ€ethylâ€Nâ€nitrosourea–Induced Adaptor Protein 2 Sigma Subunit 1 (<i>Ap2s1</i>) Mutations Establish <i>Ap2s1</i> Lossâ€ofâ€Function Mice. JBMR Plus, 2017, 1, 3-15.	2.7	16
32	Prevalence of sexual dimorphism in mammalian phenotypic traits. Nature Communications, 2017, 8, 15475.	12.8	200
33	Disease model discovery from 3,328 gene knockouts by The International Mouse Phenotyping Consortium. Nature Genetics, 2017, 49, 1231-1238.	21.4	216
34	Mutant Mice With Calcium-Sensing Receptor Activation Have Hyperglycemia That Is Rectified by Calcilytic Therapy. Endocrinology, 2017, 158, 2486-2502.	2.8	31
35	Gα11 mutation in mice causes hypocalcemia rectifiable by calcilytic therapy. JCI Insight, 2017, 2, e91103.	5.0	28
36	Cinacalcet corrects hypercalcemia in mice with an inactivating Gl $ m \pm 11$ mutation. JCI Insight, 2017, 2, .	5.0	17

SARA E WELLS

#	Article	IF	CITATIONS
37	A mutation in Nischarin causes otitis media via LIMK1 and NF-κB pathways. PLoS Genetics, 2017, 13, e1006969.	3.5	36
38	Analysis of Individual Mouse Activity in Group Housed Animals of Different Inbred Strains using a Novel Automated Home Cage Analysis System. Frontiers in Behavioral Neuroscience, 2016, 10, 106.	2.0	87
39	Genome-wide association of multiple complex traits in outbred mice by ultra-low-coverage sequencing. Nature Genetics, 2016, 48, 912-918.	21.4	124
40	Novel gene function revealed by mouse mutagenesis screens for models of age-related disease. Nature Communications, 2016, 7, 12444.	12.8	79
41	Genetic Analyses Reveal Functions for MAP2K3 and MAP2K6 in Mouse Testis Determination1. Biology of Reproduction, 2016, 94, 103.	2.7	18
42	Loss-of-Function Mutations in FRRS1L Lead to an Epileptic-Dyskinetic Encephalopathy. American Journal of Human Genetics, 2016, 98, 1249-1255.	6.2	40
43	Absence of Neuroplastin-65 Affects Synaptogenesis in Mouse Inner Hair Cells and Causes Profound Hearing Loss. Journal of Neuroscience, 2016, 36, 222-234.	3.6	30
44	High-throughput discovery of novel developmental phenotypes. Nature, 2016, 537, 508-514.	27.8	1,001
45	Age-associated changes in DNA methylation across multiple tissues in an inbred mouse model. Mechanisms of Ageing and Development, 2016, 154, 20-23.	4.6	34
46	Correction of the auditory phenotype in C57BL/6N mice via CRISPR/Cas9-mediated homology directed repair. Genome Medicine, 2016, 8, 16.	8.2	113
47	Analysis of mammalian gene function through broad-based phenotypic screens across a consortium of mouse clinics. Nature Genetics, 2015, 47, 969-978.	21.4	137
48	Applying the ARRIVE Guidelines to an In Vivo Database. PLoS Biology, 2015, 13, e1002151.	5.6	75
49	Talking welfare: the importance of a common language. Mammalian Genome, 2015, 26, 482-485.	2.2	2
50	The Regulatory Factor ZFHX3 Modifies Circadian Function in SCN via an AT Motif-Driven Axis. Cell, 2015, 162, 607-621.	28.9	74
51	A Novel Mouse Fgfr2 Mutant, Hobbyhorse (hob), Exhibits Complete XY Gonadal Sex Reversal. PLoS ONE, 2014, 9, e100447.	2.5	26
52	Dominant Î ² -catenin mutations cause intellectual disability with recognizable syndromic features. Journal of Clinical Investigation, 2014, 124, 1468-1482.	8.2	110
53	Otitis media in the Tgif knockout mouse implicates TGFβ signalling in chronic middle ear inflammatory disease. Human Molecular Genetics, 2013, 22, 2553-2565.	2.9	50
54	HIF–VEGF Pathways Are Critical for Chronic Otitis Media in Junbo and Jeff Mouse Mutants. PLoS Genetics, 2011, 7, e1002336.	3.5	54

#	Article	IF	CITATIONS
55	Characterization of a Megakaryocyte-Specific Enhancer of the Key Hemopoietic Transcription Factor GATA1 Blood, 2005, 106, 834-834.	1.4	0
56	A gene-driven ENU-based approach to generating an allelic series in any gene. Mammalian Genome, 2004, 15, 585-591.	2.2	148