
Dong-mei Liu Sr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2668132/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bacillus coagulans 13002 and fructo-oligosaccharides improve the immunity of mice with immunosuppression induced by cyclophosphamide through modulating intestinal-derived and fecal microbiota. Food Research International, 2021, 140, 109793.	2.9	41
2	Molecular Characterization of Lactobacillus plantarum DMDL 9010, a Strain with Efficient Nitrite Degradation Capacity. PLoS ONE, 2014, 9, e113792.	1.1	37
3	Regulation of carotenoid degradation and production of apocarotenoids in natural and engineered organisms. Critical Reviews in Biotechnology, 2021, 41, 513-534.	5.1	36
4	Effect of different lactic acid bacteria on nitrite degradation, volatile profiles, and sensory quality in Chinese traditional paocai. LWT - Food Science and Technology, 2021, 147, 111597.	2.5	36
5	The probiotic role of <i>Lactobacillus plantarum</i> in reducing risks associated with cardiovascular disease. International Journal of Food Science and Technology, 2017, 52, 127-136.	1.3	34
6	Characterization of Nitrite Degradation by Lactobacillus casei subsp. rhamnosus LCR 6013. PLoS ONE, 2014, 9, e93308.	1.1	27
7	Preparation of fructooligosaccharides using Aspergillus niger 6640 whole-cell as catalyst for bio-transformation. LWT - Food Science and Technology, 2016, 65, 1072-1079.	2.5	27
8	Comparative proteomics of the metabolic pathways involved in l-lactic acid production in Bacillus coagulans BCS13002 using different carbon sources. LWT - Food Science and Technology, 2019, 116, 108445.	2.5	25
9	Exopolysaccharides from Bacillus amyloliquefaciens DMBA-K4 ameliorate dextran sodium sulfate-induced colitis via gut microbiota modulation. Journal of Functional Foods, 2020, 75, 104212.	1.6	25
10	Preparation of yogurt-flavored bases by mixed lactic acid bacteria with the addition of lipase. LWT - Food Science and Technology, 2020, 131, 109577.	2.5	25
11	Physicochemical, microbiological, rheological, and sensory properties of yoghurts with new polysaccharide extracts from <i>Lactarius volemus</i> Fr. using three probiotics. International Journal of Dairy Technology, 2020, 73, 168-181.	1.3	24
12	Characterization of Lactobacillus amylolyticus L6 as potential probiotics based on genome sequence and corresponding phenotypes. LWT - Food Science and Technology, 2018, 90, 460-468.	2.5	23
13	Analysis of the probiotic characteristics and adaptability of Lactiplantibacillus plantarum DMDL 9010 to gastrointestinal environment by complete genome sequencing and corresponding phenotypes. LWT - Food Science and Technology, 2022, 158, 113129.	2.5	22
14	Whole genome sequencing of Lactobacillus plantarum DMDL 9010 and its effect on growth phenotype under nitrite stress. LWT - Food Science and Technology, 2021, 149, 111778.	2.5	20
15	<i>Lactiplantibacillus plantarum</i> DMDL 9010 alleviates dextran sodium sulfate (DSS)-induced colitis and behavioral disorders by facilitating microbiota-gut-brain axis balance. Food and Function, 2022, 13, 411-424.	2.1	19
16	Streptococcus thermophiles DMST-H2 Promotes Recovery in Mice with Antibiotic-Associated Diarrhea. Microorganisms, 2020, 8, 1650.	1.6	18
17	Assessing the safety and probiotic characteristics of Bacillus coagulans 13002 based on complete genome and phenotype analysis. LWT - Food Science and Technology, 2022, 155, 112847.	2.5	18
18	Effect of microencapsulation on morphology, physicochemical properties and flavour profiles of solid yoghurtâ€flavoured bases. International Journal of Food Science and Technology, 2021, 56, 2565-2578.	1.3	15

DONG-MEI LIU SR

#	Article	IF	CITATIONS
19	Molecular monitoring of disinfection efficacy of <i>E. coli</i> O157:H7 in bottled purified drinking water by quantitative PCR with a novel dye. Journal of Food Processing and Preservation, 2019, 43, e13875.	0.9	12
20	The effect of ultraviolet modification of <i>Acetobacter xylinum</i> (CGMCC No. 7431) and the use of coconut milk on the yield and quality of bacterial cellulose. International Journal of Food Science and Technology, 2019, 54, 3099-3108.	1.3	10
21	Detection of nitrite degradation by <i>Lactobacillus plantarum</i> DMDL9010 through the anaerobic respiration electron transport chain using proteomic analysis. International Journal of Food Science and Technology, 2021, 56, 1608-1622.	1.3	8
22	lsolation, expression, and biochemical characterization: nitrite reductase from <i>Bacillus cereus</i> LJ01. RSC Advances, 2020, 10, 37871-37882.	1.7	7
23	Comparative analysis of physicochemical, rheological, sensory and flavour properties of yoghurts using a new probiotic <i>Bacillus coagulans</i> 13002 with traditional yoghurt starter. International Journal of Food Science and Technology, 2021, 56, 1712-1723.	1.3	7
24	Structural characterization of a novel <i>Lactarius volemus</i> Fr. polysaccharide and its immunity activity in BALB/c mice. RSC Advances, 2020, 10, 30254-30264.	1.7	6
25	<i>Lactobacillus Gasseri</i> LGZ 1029 in yogurt: rheological behaviour and volatile compound composition. International Journal of Food Science and Technology, 2021, 56, 2992-3003.	1.3	6
26	Gelatinised and hydrolysed corn starch is a costâ€effective carbon source with higher production of L″actic acid by <i>Bacillus coagulans</i> compared with glucose. International Journal of Food Science and Technology, 2021, 56, 2384-2394.	1.3	2