Xuefeng Lu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2668017/publications.pdf

Version: 2024-02-01

]	172207]	155451
88		3,373		29		55
papers	cit	ations		h-index		g-index
92		92		92		2871
all docs	docs	citations		times ranked		citing authors

#	Article	IF	CITATIONS
1	Identification of a polyketide biosynthesis gene cluster by transcriptional regulator activation in Aspergillus terreus. Fungal Genetics and Biology, 2022, 160, 103690.	0.9	5
2	Engineering a Controllable Targeted Protein Degradation System and a Derived OR-GATE-Type Inducible Gene Expression System in <i>Synechococcus elongatus</i> PCC 7942. ACS Synthetic Biology, 2022, 11, 125-134.	1.9	9
3	Biological sources, metabolism, and production of glucosylglycerols, a group of natural glucosides of biotechnological interest. Biotechnology Advances, 2022, 59, 107964.	6.0	7
4	Cyanobacterial Community Structure and Isolates From Representative Hot Springs of Yunnan Province, China Using an Integrative Approach. Frontiers in Microbiology, 2022, 13, 872598.	1.5	6
5	Characterization and Structural Analysis of Emodin- <i>O</i> -Methyltransferase from <i>Aspergillus terreus</i> . Journal of Agricultural and Food Chemistry, 2022, 70, 5728-5737.	2.4	7
6	Rapidly Improving High Light and High Temperature Tolerances of Cyanobacterial Cell Factories Through the Convenient Introduction of an AtpA-C252F Mutation. Frontiers in Microbiology, 2021, 12, 647164.	1.5	4
7	Aspergillus terreus as an industrial filamentous fungus for pharmaceutical biotechnology. Current Opinion in Biotechnology, 2021, 69, 273-280.	3.3	23
8	Editorial: Exploring the Growing Role of Cyanobacteria in Industrial Biotechnology and Sustainability. Frontiers in Microbiology, 2021, 12, 725128.	1.5	3
9	Establishing an Efficient Genetic Manipulation System for Sulfated Echinocandin Producing Fungus Coleophoma empetri. Frontiers in Microbiology, 2021, 12, 734780.	1.5	8
10	Bienzyme-Catalytic and Dioxygenation-Mediated Anthraquinone Ring Opening. Journal of the American Chemical Society, 2021, 143, 16326-16331.	6.6	22
11	Engineering cyanobacteria chassis cells toward more efficient photosynthesis. Current Opinion in Biotechnology, 2020, 62, 1-6.	3.3	48
12	Collaborative Biosynthesis of a Class of Bioactive Azaphilones by Two Separate Gene Clusters Containing Four PKS/NRPSs with Transcriptional Crosstalk in Fungi. Angewandte Chemie - International Edition, 2020, 59, 4349-4353.	7.2	31
13	Structural insights into the catalytic mechanism of lovastatin hydrolase. Journal of Biological Chemistry, 2020, 295, 1047-1055.	1.6	1
14	Engineering cyanobacteria as cell factories for direct trehalose production from CO2. Metabolic Engineering, 2020, 62, 161-171.	3.6	28
15	Comparative Genomics Discloses the Uniqueness and the Biosynthetic Potential of the Marine Cyanobacterium Hyella patelloides. Frontiers in Microbiology, 2020, 11, 1527.	1.5	5
16	Specificities and functional coordination between the two Cas6 maturation endonucleases in <i>Anabaena</i> sp. PCC 7120 assign orphan CRISPR arrays to three groups. RNA Biology, 2020, 17, 1442-1453.	1.5	7
17	Systematic Identification of Target Genes for Cellular Morphology Engineering in Synechococcus elongatus PCC7942. Frontiers in Microbiology, 2020, 11, 1608.	1.5	6
18	High Light Induced Alka(e)ne Biodegradation for Lipid and Redox Homeostasis in Cyanobacteria. Frontiers in Microbiology, 2020, 11, 1659.	1.5	9

#	Article	IF	Citations
19	Discovery and Characterization of a PKS–NRPS Hybrid in Aspergillus terreus by Genome Mining. Journal of Natural Products, 2020, 83, 473-480.	1.5	19
20	Collaborative Biosynthesis of a Class of Bioactive Azaphilones by Two Separate Gene Clusters Containing Four PKS/NRPSs with Transcriptional Crosstalk in Fungi. Angewandte Chemie, 2020, 132, 4379-4383.	1.6	9
21	An overview of the bacterial SsrA system modulating intracellular protein levels and activities. Applied Microbiology and Biotechnology, 2020, 104, 5229-5241.	1.7	18
22	Freshwater Cyanobacterium <i>Synechococcus elongatus</i> PCC 7942 Adapts to an Environment with Salt Stress via Ion-Induced Enzymatic Balance of Compatible Solutes. Applied and Environmental Microbiology, 2020, 86, .	1.4	23
23	Engineering ethanol production in a marine cyanobacterium Synechococcus sp. PCC7002 through simultaneously removing glycogen synthesis genes and introducing ethanolgenic cassettes. Journal of Biotechnology, 2020, 317, 1-4.	1.9	25
24	Structural insights into the catalytic mechanism of lovastatin hydrolase. Journal of Biological Chemistry, 2020, 295, 1047-1055.	1.6	3
25	Compatible solutes profiling and carbohydrate feedstock from diversified cyanobacteria. Algal Research, 2019, 43, 101637.	2.4	14
26	Systematic identification of a neutral site on chromosome of Synechococcus sp. PCC7002, a promising photosynthetic chassis strain. Journal of Biotechnology, 2019, 295, 37-40.	1.9	15
27	Construction of an Efficient and RobustAspergillus terreusCell Factory for Monacolin J Production. ACS Synthetic Biology, 2019, 8, 818-825.	1.9	19
28	Progress and perspective on cyanobacterial glycogen metabolism engineering. Biotechnology Advances, 2019, 37, 771-786.	6.0	62
29	Adopting a Theophylline-Responsive Riboswitch for Flexible Regulation and Understanding of Glycogen Metabolism in Synechococcus elongatus PCC7942. Frontiers in Microbiology, 2019, 10, 551.	1.5	20
30	Identification of two two omponent signal transduction mutants with enhanced sucrose biosynthesis in <i>Synechococcus elongatus</i> PCC 7942. Journal of Basic Microbiology, 2019, 59, 465-476.	1.8	7
31	Enhanced Single-Step Bioproduction of the Simvastatin Precursor Monacolin J in an Industrial Strain of Aspergillus terreusby Employing the Evolved Lovastatin Hydrolase. Biotechnology Journal, 2018, 13, 1800094.	1.8	8
32	Tailoring cyanobacterial cell factory for improved industrial properties. Biotechnology Advances, 2018, 36, 430-442.	6.0	66
33	Effects of Reduced and Enhanced Glycogen Pools on Salt-Induced Sucrose Production in a Sucrose-Secreting Strain of Synechococcus elongatus PCC 7942. Applied and Environmental Microbiology, 2018, 84, .	1.4	60
34	A Specific Single Nucleotide Polymorphism in the ATP Synthase Gene Significantly Improves Environmental Stress Tolerance of Synechococcus elongatus PCC 7942. Applied and Environmental Microbiology, 2018, 84, .	1.4	31
35	Terminal Olefin Profiles and Phylogenetic Analyses of Olefin Synthases of Diverse Cyanobacterial Species. Applied and Environmental Microbiology, 2018, 84, .	1.4	21
36	The primary transcriptome of the fast-growing cyanobacterium Synechococcus elongatus UTEX 2973. Biotechnology for Biofuels, 2018, 11, 218.	6.2	50

#	Article	IF	Citations
37	Inactivation of invertase enhances sucrose production in the cyanobacterium Synechocystis sp. PCC 6803. Microbiology (United Kingdom), 2018, 164, 1220-1228.	0.7	29
38	Determination of Intracellular Osmolytes in Cyanobacterial Cells. Bio-protocol, 2018, 8, e2812.	0.2	1
39	Enzymatic Activity Assay for Invertase in Synechocystis Cells. Bio-protocol, 2018, 8, e2856.	0.2	1
40	Single-step production of the simvastatin precursor monacolin J by engineering of an industrial strain of Aspergillus terreus. Metabolic Engineering, 2017, 42, 109-114.	3.6	26
41	Versatility of hydrocarbon production in cyanobacteria. Applied Microbiology and Biotechnology, 2017, 101, 905-919.	1.7	35
42	Draft Genome Sequences of Nine Cyanobacterial Strains from Diverse Habitats. Genome Announcements, 2017, 5, .	0.8	11
43	Identification of residues important for the activity of aldehyde-deformylating oxygenase through investigation into the structure-activity relationship. BMC Biotechnology, 2017, 17, 31.	1.7	13
44	Rescuing ethanol photosynthetic production of cyanobacteria in non-sterilized outdoor cultivations with a bicarbonate-based pH-rising strategy. Biotechnology for Biofuels, 2017, 10, 93.	6.2	19
45	Effects of global transcription factor NtcA on photosynthetic production of ethylene in recombinant Synechocystis sp. PCC 6803. Biotechnology for Biofuels, 2017, 10, 145.	6.2	21
46	The Response Regulator Slr1588 Regulates spsA But Is Not Crucial for Salt Acclimation of Synechocystis sp. PCC 6803. Frontiers in Microbiology, 2017, 8, 1176.	1.5	13
47	Slr1670 from Synechocystis sp. PCC 6803 Is Required for the Re-assimilation of the Osmolyte Glucosylglycerol. Frontiers in Microbiology, 2016, 7, 1350.	1.5	15
48	Structure-oriented substrate specificity engineering of aldehyde-deformylating oxygenase towards aldehydes carbon chain length. Biotechnology for Biofuels, 2016, 9, 185.	6.2	34
49	Biosynthesis, biotechnological production, and applications of glucosylglycerols. Applied Microbiology and Biotechnology, 2016, 100, 6131-6139.	1.7	25
50	The potential of Synechococcus elongatus UTEX 2973 for sugar feedstock production. Applied Microbiology and Biotechnology, 2016, 100, 7865-7875.	1.7	113
51	Microbial synthesis of propane by engineering valine pathway and aldehyde-deformylating oxygenase. Biotechnology for Biofuels, 2016, 9, 80.	6.2	25
52	Identification of an itaconic acid degrading pathway in itaconic acid producing Aspergillus terreus. Applied Microbiology and Biotechnology, 2016, 100, 7541-7548.	1.7	26
53	Sucrose secreted by the engineered cyanobacterium and its fermentability. Journal of Ocean University of China, 2016, 15, 890-896.	0.6	22
54	Establishing an efficient gene-targeting system in an itaconic-acid producing Aspergillus terreus strain. Biotechnology Letters, 2016, 38, 1603-1610.	1.1	16

#	Article	IF	CITATIONS
55	Combinatory strategy for characterizing and understanding the ethanol synthesis pathway in cyanobacteria cell factories. Biotechnology for Biofuels, 2015, 8, 184.	6.2	24
56	Photosynthetic and extracellular production of glucosylglycerol by genetically engineered and gel-encapsulated cyanobacteria. Applied Microbiology and Biotechnology, 2015, 99, 2147-2154.	1.7	40
57	Photosynthetic production of glycerol by a recombinant cyanobacterium. Journal of Biotechnology, 2015, 195, 46-51.	1.9	46
58	Structural insights into the catalytic mechanism of aldehyde-deformylating oxygenases. Protein and Cell, 2015, 6, 55-67.	4.8	49
59	Genetically assembled fluorescent biosensor for in situ detection of bio-synthesized alkanes. Scientific Reports, 2015, 5, 10907.	1.6	22
60	Enhancing photosynthetic production of ethylene in genetically engineered Synechocystis sp. PCC 6803. Green Chemistry, 2015, 17, 421-434.	4.6	58
61	Slr0151 in <i>Synechocystis</i> sp. PCC 6803 is required for efficient repair of photosystem II under highâ€ight condition. Journal of Integrative Plant Biology, 2014, 56, 1136-1150.	4.1	24
62	Improved production of fatty alcohols in cyanobacteria by metabolic engineering. Biotechnology for Biofuels, 2014, 7, 94.	6.2	71
63	Improvement of hydrogen peroxide stability of Pleurotus eryngii versatile ligninolytic peroxidase by rational protein engineering. Enzyme and Microbial Technology, 2014, 54, 51-58.	1.6	23
64	Cloning, characterization and application of a glyceraldehyde-3-phosphate dehydrogenase promoter from <i>Aspergillus terreus</i> . Journal of Industrial Microbiology and Biotechnology, 2014, 41, 585-592.	1.4	24
65	Engineering self-sufficient aldehyde deformylating oxygenases fused to alternative electron transfer systems for efficient conversion of aldehydes into alkanes. Chemical Communications, 2014, 50, 4299.	2.2	26
66	Direct production of itaconic acid from liquefied corn starch by genetically engineered Aspergillus terreus. Microbial Cell Factories, 2014, 13, 108.	1.9	35
67	Improving itaconic acid production through genetic engineering of an industrial Aspergillus terreus strain. Microbial Cell Factories, 2014, 13, 119.	1.9	64
68	Conversion of fatty aldehydes into alk (a/e) nes by in vitro reconstituted cyanobacterial aldehyde-deformylating oxygenase with the cognate electron transfer system. Biotechnology for Biofuels, 2013, 6, 86.	6.2	51
69	Engineering cyanobacteria to improve photosynthetic production of alka(e)nes. Biotechnology for Biofuels, 2013, 6, 69.	6.2	175
70	Fatty alcohol production in engineered E. coli expressing Marinobacter fatty acyl-CoA reductases. Applied Microbiology and Biotechnology, 2013, 97, 7061-7071.	1.7	65
71	Microbial recycling of glycerol to biodiesel. Bioresource Technology, 2013, 150, 1-8.	4.8	12
72	Construction, characterization and application of molecular tools for metabolic engineering of Synechocystis sp Biotechnology Letters, 2013, 35, 1655-1661.	1.1	23

#	Article	IF	CITATIONS
73	Hydrocarbon profiles and phylogenetic analyses of diversified cyanobacterial species. Applied Energy, 2013, 111, 383-393.	5.1	39
74	Application of the FLP/FRT recombination system in cyanobacteria for construction of markerless mutants. Applied Microbiology and Biotechnology, 2013, 97, 6373-6382.	1.7	32
75	Exploring the photosynthetic production capacity of sucrose by cyanobacteria. Metabolic Engineering, 2013, 19, 17-25.	3.6	104
76	Enzymatic and physiological characterization of fatty acid activation in <i>Synechocystis</i> pcc6803. Journal of Basic Microbiology, 2013, 53, 848-855.	1.8	3
77	Microbial Synthesis of Alka(e)nes. Frontiers in Bioengineering and Biotechnology, 2013, 1, 10.	2.0	35
78	Production of Photosynthetic Biofuels by Genetically Engineering Cyanobacteria. Current Chemical Biology, 2012, 6, 26-31.	0.2	0
79	Direct over-expression, characterization and H2O2 stability study of active Pleurotus eryngii versatile peroxidase in Escherichia coli. Biotechnology Letters, 2012, 34, 1537-1543.	1.1	22
80	Photosynthetic production of ethanol from carbon dioxide in genetically engineered cyanobacteria. Energy and Environmental Science, 2012, 5, 9857-9865.	15.6	337
81	Effects of fatty acid activation on photosynthetic production of fatty acid-based biofuels in Synechocystis sp. PCC6803. Biotechnology for Biofuels, 2012, 5, 17.	6.2	44
82	Production of Photosynthetic Biofuels by Genetically Engineering Cyanobacteria. Current Chemical Biology, 2012, 6, 26-31.	0.2	3
83	Quantitative analysis of fatty-acid-based biofuels produced by wild-type and genetically engineered cyanobacteria by gas chromatography–mass spectrometry. Journal of Chromatography A, 2011, 1218, 8289-8293.	1.8	32
84	Photosynthesis driven conversion of carbon dioxide to fatty alcohols and hydrocarbons in cyanobacteria. Metabolic Engineering, 2011, 13, 169-176.	3.6	224
85	De novo Biosynthesis of Biodiesel by Escherichia coli in Optimized Fed-Batch Cultivation. PLoS ONE, 2011, 6, e20265.	1.1	63
86	A perspective: Photosynthetic production of fatty acid-based biofuels in genetically engineered cyanobacteria. Biotechnology Advances, 2010, 28, 742-746.	6.0	103
87	Overproduction of free fatty acids in E. coli: Implications for biodiesel production. Metabolic Engineering, 2008, 10, 333-339.	3.6	341
88	Manipulating the Expression of Glycogen Phosphorylase in Synechococcus elongatus PCC 7942 to Mobilize Glycogen Storage for Sucrose Synthesis. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	4