
Anne-Marie Rodriguez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/266794/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Transplantation of a multipotent cell population from human adipose tissue induces dystrophin expression in the immunocompetent mdx mouse. Journal of Experimental Medicine, 2005, 201, 1397-1405.	4.2	389
2	The human adipose tissue is a source of multipotent stem cells. Biochimie, 2005, 87, 125-128.	1.3	360
3	Adipocyte differentiation of multipotent cells established from human adipose tissue. Biochemical and Biophysical Research Communications, 2004, 315, 255-263.	1.0	264
4	Human Mesenchymal Stem Cells Reprogram Adult Cardiomyocytes Toward a Progenitor-Like State Through Partial Cell Fusion and Mitochondria Transfer. Stem Cells, 2011, 29, 812-824.	1.4	215
5	Mesenchymal stem cells sense mitochondria released from damaged cells as danger signals to activate their rescue properties. Cell Death and Differentiation, 2017, 24, 1224-1238.	5.0	202
6	Contribution of Adipose Triglyceride Lipase and Hormone-sensitive Lipase to Lipolysis in hMADS Adipocytes. Journal of Biological Chemistry, 2009, 284, 18282-18291.	1.6	177
7	Safety of Intracavernous Bone Marrow-Mononuclear Cells for Postradical Prostatectomy Erectile Dysfunction: An Open Dose-Escalation Pilot Study. European Urology, 2016, 69, 988-991.	0.9	115
8	Platelets Facilitate the Wound-Healing Capability of Mesenchymal Stem Cells by Mitochondrial Transfer and Metabolic Reprogramming. Cell Metabolism, 2021, 33, 283-299.e9.	7.2	102
9	Nanotubular Crosstalk with Distressed Cardiomyocytes Stimulates the Paracrine Repair Function of Mesenchymal Stem Cells. Stem Cells, 2014, 32, 216-230.	1.4	98
10	Cloning of the mouse sodium iodide symporter and its expression in the mammary gland and other tissues. Journal of Endocrinology, 2001, 170, 185-196.	1.2	79
11	Intercellular mitochondria trafficking highlighting the dual role of mesenchymal stem cells as both sensors and rescuers of tissue injury. Cell Cycle, 2018, 17, 712-721.	1.3	76
12	Vascular and angiogenic activities of CORM-401, an oxidant-sensitive CO-releasing molecule. Biochemical Pharmacology, 2016, 102, 64-77.	2.0	68
13	Endoplasmic reticulum–mitochondria crosstalk: from junction to function across neurological disorders. Annals of the New York Academy of Sciences, 2019, 1457, 41-60.	1.8	64
14	Placental Expression of HLA Class I Genes. American Journal of Reproductive Immunology, 1996, 35, 216-225.	1.2	61
15	Intracavernous Injections of Bone Marrow Mononucleated Cells for Postradical Prostatectomy Erectile Dysfunction: Final Results of the INSTIN Clinical Trial. European Urology Focus, 2017, 3, 643-645.	1.6	57
16	Platelet-Rich Plasma Improves the Wound Healing Potential of Mesenchymal Stem Cells through Paracrine and Metabolism Alterations. Stem Cells International, 2019, 2019, 1-14.	1.2	52
17	Identification and Characterization of a Putative Human Iodide Transporter Located at the Apical Membrane of Thyrocytes. Journal of Clinical Endocrinology and Metabolism, 2002, 87, 3500-3503.	1.8	49
18	Interferon-Î ³ rescues HLA class la cell surface expression in term villous trophoblast cells by inducing synthesis of TAP proteins. European Journal of Immunology, 1997, 27, 45-54.	1.6	46

#	Article	IF	CITATIONS
19	Detection of membrane-bound HLA-G translated products with a specific monoclonal antibody Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 10292-10296.	3.3	41
20	Delivery of human mesenchymal adipose-derived stem cells restores multiple urological dysfunctions in a rat model mimicking radical prostatectomy damages through tissue-specific paracrine mechanisms. Stem Cells, 2016, 34, 392-404.	1.4	37
21	cDNA and protein characterization of humanMAGE-10. , 1999, 82, 901-907.		36
22	Efficacy of autologous platelet-rich plasma combined with hyaluronic acid on skin facial rejuvenation: A prospective study. Journal of the American Academy of Dermatology, 2017, 77, 584-586.	0.6	31
23	Use of platelet-rich plasma (PRP) in microsurgery. Journal of Stomatology, Oral and Maxillofacial Surgery, 2017, 118, 236-237.	0.5	27
24	Multifaceted Roles of Mitochondrial Components and Metabolites in Metabolic Diseases and Cancer. International Journal of Molecular Sciences, 2020, 21, 4405.	1.8	24
25	Sirtuin-1 - Mediated NF-κB Pathway Modulation to Mitigate Inflammasome Signaling and Cellular Apoptosis is One of the Neuroprotective Effects of Intra-arterial Mesenchymal Stem Cell Therapy Following Ischemic Stroke. Stem Cell Reviews and Reports, 2022, 18, 821-838.	1.7	23
26	Intercellular Communication in the Brain through Tunneling Nanotubes. Cancers, 2022, 14, 1207.	1.7	20
27	Efficacy of Autologous Platelet Concentrates as Adjuvant Therapy to Surgical Excision in the Treatment of Keloid Scars Refractory to Conventional Treatments. Annals of Plastic Surgery, 2018, 81, 170-175.	0.5	19
28	Adhesive Properties of Choriocarcinoma Cells toward Lymphocytes Activated or Not by Interleukin-2. Cellular Immunology, 1994, 157, 38-47.	1.4	16
29	Should platelet-rich plasma be activated in fat grafts? An animal study. Journal of Plastic, Reconstructive and Aesthetic Surgery, 2018, 71, 681-690.	0.5	16
30	Absence of imprinting of HLA class Ia genes leads to co-expression of biparental alleles on term human trophoblast cells upon IFN-Î ³ induction. Immunogenetics, 1998, 47, 297-304.	1.2	12
31	Lung Fibroblasts Share Mesenchymal Stem Cell Features Which Are Altered in Chronic Obstructive Pulmonary Disease via the Overactivation of the Hedgehog Signaling Pathway. PLoS ONE, 2015, 10, e0121579.	1.1	12
32	Differences Between Human Sperm and Somatic Cell DNA in CpG Methylation Within the HLA Class I Chromosomal Region. American Journal of Reproductive Immunology, 1993, 30, 228-238.	1.2	9
33	Monitoring of Erectile and Urethral Sphincter Dysfunctions in a Rat Model Mimicking Radical Prostatectomy Damage. Journal of Sexual Medicine, 2012, 9, 2827-2837.	0.3	4
34	Transcriptional analysis of mouse wounds grafted with human mesenchymal stem cells and platelets. STAR Protocols, 2021, 2, 100650.	0.5	1
35	Fine regulation of HLA class Ia gene expression in term human villous trophoblast cells. Placenta, 1998, 19, 135-142.	0.7	0
36	Coculture between hMADS and Mouse Adult CM. Bio-protocol, 2014, 4, .	0.2	0

#	Article	IF	CITATIONS
37	Platelets Promote Pro-Angiogenic Activity of Mesenchymal Stem Cells Via Mitochondrial Transfer and Metabolic Reprogramming. SSRN Electronic Journal, 0, , .	0.4	0