Mohd Ali Hashim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2667900/publications.pdf

Version: 2024-02-01

206 papers 15,961 citations

65 h-index 121 g-index

209 all docs

209 docs citations

209 times ranked 15325 citing authors

#	Article	IF	CITATIONS
1	Superoxide Ion: Generation and Chemical Implications. Chemical Reviews, 2016, 116, 3029-3085.	23.0	1,458
2	Remediation technologies for heavy metal contaminated groundwater. Journal of Environmental Management, 2011, 92, 2355-2388.	3.8	697
3	Are deep eutectic solvents benign or toxic?. Chemosphere, 2013, 90, 2193-2195.	4.2	473
4	Microemulsion method: A novel route to synthesize organic and inorganic nanomaterials. Arabian Journal of Chemistry, 2012, 5, 397-417.	2.3	462
5	Potential applications of deep eutectic solvents in nanotechnology. Chemical Engineering Journal, 2015, 273, 551-567.	6.6	415
6	Applications of deep eutectic solvents in biotechnology and bioengineeringâ€"Promises and challenges. Biotechnology Advances, 2017, 35, 105-134.	6.0	361
7	Phosphonium-Based Ionic Liquids Analogues and Their Physical Properties. Journal of Chemical & Description of Engineering Data, 2010, 55, 4632-4637.	1.0	345
8	Glycerol-based deep eutectic solvents: Physical properties. Journal of Molecular Liquids, 2016, 215, 98-103.	2.3	294
9	An overview of cathode material and catalysts suitable for generating hydrogen in microbial electrolysis cell. International Journal of Hydrogen Energy, 2013, 38, 1745-1757.	3.8	289
10	Biosorption of cadmium by brown, green, and red seaweeds. Chemical Engineering Journal, 2004, 97, 249-255.	6.6	286
11	Electrochemical approaches to the production of graphene flakes and their potential applications. Carbon, 2013, 54, 1-21.	5.4	285
12	Glucose-based deep eutectic solvents: Physical properties. Journal of Molecular Liquids, 2013, 178, 137-141.	2.3	285
13	A novel technique for separating glycerine from palm oil-based biodiesel using ionic liquids. Fuel Processing Technology, 2010, 91, 116-120.	3.7	265
14	Densities of ammonium and phosphonium based deep eutectic solvents: Prediction using artificial intelligence and group contribution techniques. Thermochimica Acta, 2012, 527, 59-66.	1.2	264
15	Application of carbon materials in redox flow batteries. Journal of Power Sources, 2014, 253, 150-166.	4.0	262
16	Fruit sugar-based deep eutectic solvents and their physical properties. Thermochimica Acta, 2012, 541, 70-75.	1.2	260
17	The role of ionic liquids in desulfurization of fuels: A review. Renewable and Sustainable Energy Reviews, 2017, 76, 1534-1549.	8.2	247
18	Investigating the electrochemical windows of ionic liquids. Journal of Industrial and Engineering Chemistry, 2013, 19, 106-112.	2.9	242

#	Article	lF	CITATIONS
19	Assessment of cytotoxicity and toxicity for phosphonium-based deep eutectic solvents. Chemosphere, 2013, 93, 455-459.	4.2	217
20	Prospects of applying ionic liquids and deep eutectic solvents for renewable energy storage by means of redox flow batteries. Renewable and Sustainable Energy Reviews, 2014, 30, 254-270.	8.2	212
21	In Vitro and In Vivo Toxicity Profiling of Ammonium-Based Deep Eutectic Solvents. PLoS ONE, 2015, 10, e0117934.	1.1	204
22	Prediction of deep eutectic solvents densities at different temperatures. Thermochimica Acta, 2011, 515, 67-72.	1.2	200
23	Using Deep Eutectic Solvents Based on Methyl Triphenyl Phosphunium Bromide for the Removal of Glycerol from Palm-Oil-Based Biodiesel. Energy & Energy & 2011, 25, 2671-2678.	2.5	189
24	Evaluation of toxicity and biodegradability for cholinium-based deep eutectic solvents. RSC Advances, 2015, 5, 83636-83647.	1.7	180
25	Spirulina cultivation in digested sago starch factory wastewater. Journal of Applied Phycology, 2000, 12, 395-400.	1.5	177
26	Functionalization of graphene using deep eutectic solvents. Nanoscale Research Letters, 2015, 10, 1004.	3.1	172
27	Ionic liquids in supported liquid membrane technology. Chemical Engineering Journal, 2011, 171, 242-254.	6.6	165
28	Contemporary Environmental Issues of Landfill Leachate: Assessment and Remedies. Critical Reviews in Environmental Science and Technology, 2015, 45, 472-590.	6.6	156
29	Ionic Liquid-Carbon Nanomaterial Hybrids for Electrochemical Sensor Applications: a Review. Electrochimica Acta, 2016, 193, 321-343.	2.6	156
30	Physical properties of ethylene glycol-based deep eutectic solvents. Journal of Molecular Liquids, 2019, 276, 794-800.	2.3	150
31	A novel phosphonium-based deep eutectic catalyst for biodiesel production from industrial low grade crude palm oil. Chemical Engineering Science, 2013, 92, 81-88.	1.9	141
32	Separation of vitamin E (tocopherol, tocotrienol, and tocomonoenol) in palm oil. Lipids, 2004, 39, 1031-1035.	0.7	130
33	A new processing route for cleaner production of biodiesel fuel using aÂcholine chloride based deep eutectic solvent. Journal of Cleaner Production, 2014, 65, 246-251.	4.6	129
34	Prediction of the surface tension of deep eutectic solvents. Fluid Phase Equilibria, 2012, 319, 48-54.	1.4	126
35	Eutectic solvents for the removal of residual palm oil-based biodiesel catalyst. Separation and Purification Technology, 2011, 81, 216-222.	3.9	121
36	Unraveling the cytotoxicity and metabolic pathways of binary natural deep eutectic solvent systems. Scientific Reports, 2017, 7, 41257.	1.6	121

#	Article	IF	Citations
37	Separation of BTEX aromatics from n-octane using a (tetrabutylammonium bromide + sulfolane) deep eutectic solvent – experiments and COSMO-RS prediction. RSC Advances, 2014, 4, 17597.	1.7	117
38	Efficient removal of benzene from cyclohexane-benzene mixtures using deep eutectic solvents – COSMO-RS screening and experimental validation. Journal of Chemical Thermodynamics, 2017, 104, 33-44.	1.0	114
39	Progress in the electrochemical modification of graphene-based materials and their applications. Electrochimica Acta, 2013, 107, 425-440.	2.6	112
40	Microbiological and biochemical changes during the composting of oil palm empty-fruit-bunches. Effect of nitrogen supplementation on the substrate. Bioresource Technology, 1995, 52, 133-144.	4.8	98
41	Removal of Thiophene from Mixtures with <i>n</i> -Heptane by Selective Extraction Using Deep Eutectic Solvents. Industrial & Engineering Chemistry Research, 2016, 55, 8415-8423.	1.8	98
42	Performance evaluation of organic emulsion liquid membrane on phenol removal. Journal of Hazardous Materials, 2010, 184, 255-260.	6.5	97
43	Liquid–liquid equilibria for the ternary system (phosphonium based deep eutectic) Tj ETQq1 1 0.784314 rgBT / 2012, 314, 52-59.	Overlock :	10 Tf 50 507 97
44	Evaluating the Performance of Deep Eutectic Solvents for Use in Extractive Denitrification of Liquid Fuels by the Conductor-like Screening Model for Real Solvents. Journal of Chemical & Engineering Data, 2014, 59, 3470-3487.	1.0	97
45	Allyl triphenyl phosphonium bromide based DES-functionalized carbon nanotubes for the removal of mercury from water. Chemosphere, 2017, 167, 44-52.	4.2	95
46	Indicators for assessment of sustainable production: A case study of the petrochemical industry in Malaysia. Ecological Indicators, 2013, 24, 392-402.	2.6	93
47	Absorption of carbon dioxide in the aqueous mixtures of methyldiethanolamine with three types of imidazolium-based ionic liquids. Fluid Phase Equilibria, 2011, 309, 76-82.	1.4	92
48	Physicochemical properties of ammonium-based deep eutectic solvents and their electrochemical evaluation using organometallic reference redox systems. Electrochimica Acta, 2013, 113, 205-211.	2.6	90
49	Lead removal from water by choline chloride based deep eutectic solvents functionalized carbon nanotubes. Journal of Molecular Liquids, 2016, 222, 883-894.	2.3	90
50	Phase equilibria of toluene/heptane with tetrabutylphosphonium bromide based deep eutectic solvents for the potential use in the separation of aromatics from naphtha. Fluid Phase Equilibria, 2012, 333, 47-54.	1.4	89
51	Functionalization of CNTs surface with phosphonuim based deep eutectic solvents for arsenic removal from water. Applied Surface Science, 2016, 389, 216-226.	3.1	89
52	Chromium removal by emulsion liquid membrane using [BMIM]+[NTf2]â^ as stabilizer and TOMAC as extractant. Desalination, 2011, 278, 50-56.	4.0	88
53	Extractive denitrogenation of diesel fuel using ammonium- and phosphonium-based deep eutectic solvents. Journal of Chemical Thermodynamics, 2016, 95, 164-173.	1.0	86
54	Triethylene glycol based deep eutectic solvents and their physical properties. Journal of the Taiwan Institute of Chemical Engineers, 2015, 50, 24-30.	2.7	83

#	Article	IF	CITATIONS
55	Intensification of biotransformations using deep eutectic solvents: Overview and outlook. Process Biochemistry, 2018, 66, 33-60.	1.8	83
56	Novel deep eutectic solvent-functionalized carbon nanotubes adsorbent for mercury removal from water. Journal of Colloid and Interface Science, 2017, 497, 413-421.	5.0	81
57	A novel ammonium based eutectic solvent for the treatment of free fatty acid and synthesis of biodiesel fuel. Industrial Crops and Products, 2013, 46, 392-398.	2.5	80
58	Taguchi optimization approach for production of activated carbon from phosphoric acid impregnated palm kernel shell by microwave heating. Journal of Cleaner Production, 2015, 105, 420-427.	4.6	77
59	Comparison of ionic liquid, acid and alkali pretreatments for sugarcane bagasse enzymatic saccharification. Journal of Chemical Technology and Biotechnology, 2011, 86, 1342-1348.	1.6	76
60	Prediction of refractive index and density of deep eutectic solvents using atomic contributions. Fluid Phase Equilibria, 2013, 354, 304-311.	1.4	76
61	A comparative study of experimental optimization and response surface optimization of Cr removal by emulsion ionic liquid membrane. Journal of Hazardous Materials, 2011, 195, 383-390.	6.5	71
62	Experimental Investigation on the Solubility and Initial Rate of Absorption of CO ₂ in Aqueous Mixtures of Methyldiethanolamine with the Ionic Liquid 1-Butyl-3-methylimidazolium Tetrafluoroborate. Journal of Chemical & Engineering Data, 2010, 55, 5733-5738.	1.0	70
63	Electrical conductivity of ammonium and phosphonium based deep eutectic solvents: Measurements and artificial intelligence-based prediction. Fluid Phase Equilibria, 2013, 356, 30-37.	1.4	70
64	Behavior of hydrophobic ionic liquids as liquid membranes on phenol removal: Experimental study and optimization. Desalination, 2011, 278, 250-258.	4.0	68
65	Zinc (II) chloride-based deep eutectic solvents for application as electrolytes: Preparation and characterization. Journal of Molecular Liquids, 2015, 204, 76-83.	2.3	67
66	Pure and aqueous deep eutectic solvents for a lipase-catalysed hydrolysis reaction. Biochemical Engineering Journal, 2017, 117, 129-138.	1.8	66
67	Ammonium-based deep eutectic solvents as novel soil washing agent for lead removal. Chemical Engineering Journal, 2016, 294, 316-322.	6.6	64
68	Application of supercritical fluid chromatography in the quantitative analysis of minor components (carotenes, vitamin E, sterols, and squalene) from palm oil. Lipids, 2005, 40, 429-432.	0.7	62
69	Optimization of the Synthesis of Superhydrophobic Carbon Nanomaterials by Chemical Vapor Deposition. Scientific Reports, 2018, 8, 2778.	1.6	61
70	Nanotoxicity: Dimensional and Morphological Concerns. Advances in Physical Chemistry, 2011, 2011, 1-15.	2.0	60
71	Phase equilibria of toluene/heptane with deep eutectic solvents based on ethyltriphenylphosphonium iodide for the potential use in the separation of aromatics from naphtha. Journal of Chemical Thermodynamics, 2013, 65, 138-149.	1.0	59
72	Separation of aromatic and aliphatic hydrocarbons using deep eutectic solvents: A critical review. Fluid Phase Equilibria, 2017, 448, 152-167.	1.4	59

#	Article	IF	CITATIONS
73	Performance evaluation of supported ionic liquid membrane for removal of phenol. Journal of Hazardous Materials, 2011, 192, 1283-1290.	6.5	57
74	Thermal stress management of a solid oxide fuel cell using neural network predictive control. Energy, 2013, 62, 320-329.	4.5	56
75	Coupling the capabilities of different complexing agents into deep eutectic solvents to enhance the separation of aromatics from aliphatics. Journal of Chemical Thermodynamics, 2015, 84, 67-75.	1.0	56
76	Electrochemical reduction of dioxygen in Bis (trifluoromethylsulfonyl) imide based ionic liquids. Journal of Electroanalytical Chemistry, 2011, 657, 150-157.	1.9	55
77	Long term stability of superoxide ion in piperidinium, pyrrolidinium and phosphonium cations-based ionic liquids and its utilization in the destruction of chlorobenzenes. Journal of Electroanalytical Chemistry, 2012, 664, 26-32.	1.9	55
78	A New Emulsion Liquid Membrane Based on a Palm Oil for the Extraction of Heavy Metals. Membranes, 2015, 5, 168-179.	1.4	54
79	Extraction of nitrogen compounds from diesel fuel using imidazolium- and pyridinium-based ionic liquids: Experiments, COSMO-RS prediction and NRTL correlation. Fluid Phase Equilibria, 2015, 405, 55-67.	1.4	54
80	Biosorption of cadmium by algal biomass: Adsorption and desorption characteristics. Water Science and Technology, 1997, 35, 115.	1.2	53
81	Extraction performance of chromium (VI) with emulsion liquid membrane by Cyanex 923 as carrier using response surface methodology. Desalination, 2011, 266, 286-290.	4.0	53
82	Extraction of Metal Ions by ELM Separation Technology. Journal of Dispersion Science and Technology, 2012, 33, 346-356.	1.3	53
83	Kinetics of Carbon Dioxide absorption into aqueous MDEA+[bmim][BF4] solutions from 303 to 333K. Chemical Engineering Journal, 2012, 200-202, 317-328.	6.6	53
84	The electrochemical behaviour of ferrocene in deep eutectic solvents based on quaternary ammonium and phosphonium salts. Physical Chemistry Chemical Physics, 2013, 15, 1707-1714.	1.3	53
85	Density, viscosity, physical solubility and diffusivity of CO2 in aqueous MDEA+[bmim][BF4] solutions from 303 to 333K. Chemical Engineering Journal, 2011, 172, 763-770.	6.6	52
86	A novel method for the synthesis of 2-imidazolones. Tetrahedron Letters, 2010, 51, 1976-1978.	0.7	50
87	Functionalization of carbon nanotubes using eutectic mixtures: A promising route for enhanced aqueous dispersibility and electrochemical activity. Chemical Engineering Journal, 2017, 311, 326-339.	6.6	50
88	Application of guar gum for the removal of dissolved lead from wastewater. Industrial Crops and Products, 2018, 111, 261-269.	2.5	49
89	Performance of Cholineâ€Based Deep Eutectic Solvents in the Extraction of Tocols from Crude Palm Oil. JAOCS, Journal of the American Oil Chemists' Society, 2015, 92, 1709-1716.	0.8	47
90	Effects of ionic strength and pH on the adsorption equilibria of lysozyme on ion exchangers. Journal of Chemical Technology and Biotechnology, 1995, 62, 253-260.	1.6	44

#	Article	IF	CITATIONS
91	Microfiltration of water-based paint effluents. Journal of Environmental Management, 2004, 8, 455-466.	1.7	43
92	Liquid-liquid separation of azeotropic mixtures of ethanol/alkanes using deep eutectic solvents: COSMO-RS prediction and experimental validation. Fluid Phase Equilibria, 2017, 448, 105-115.	1.4	43
93	Solubility of Sodium Salts in Ammonium-Based Deep Eutectic Solvents. Journal of Chemical & Engineering Data, 2013, 58, 2154-2162.	1.0	42
94	Adsorption of copper(II) and EDTA-chelated copper(II) onto granular activated carbons. Journal of Chemical Technology and Biotechnology, 2000, 75, 1054-1060.	1.6	41
95	Copper biosorption on immobilized seaweed biomass: Column breakthrough characteristics. Journal of Environmental Sciences, 2007, 19, 928-932.	3.2	41
96	Isolation of Palm Tocols Using Supercritical Fluid Chromatography. Journal of Chromatographic Science, 2004, 42, 536-539.	0.7	39
97	Application of colloidal gas aphrons for pollution remediation. Journal of Chemical Technology and Biotechnology, 2012, 87, 305-324.	1.6	38
98	Ethanesulfonic acid-based esterification of industrial acidic crude palm oil for biodiesel production. Bioresource Technology, 2011, 102, 9564-9570.	4.8	37
99	Physicochemical properties of piperidinium, ammonium, pyrrolidinium and morpholinium cations based ionic liquids paired with bis(trifluoromethylsulfonyl)imide anion. Fluid Phase Equilibria, 2016, 427, 18-26.	1.4	34
100	Arsenic removal by adsorption on activated carbon in a rotating packed bed. Journal of Water Process Engineering, 2019, 30, 100591.	2.6	34
101	Adsorption and desorption characteristics of zinc on ash particles derived from oil palm waste. Journal of Chemical Technology and Biotechnology, 2002, 77, 685-693.	1.6	33
102	Evaluation of Molecular Interaction in Binary Mixture of Ionic Liquids + Heterocyclic Nitrogen Compounds: Ab Initio Method and COSMO-RS Model. Industrial & Engineering Chemistry Research, 2013, 52, 18043-18058.	1.8	33
103	The Effect of Temperature on Kinetics and Diffusion Coefficients of Metallocene Derivatives in Polyol-Based Deep Eutectic Solvents. PLoS ONE, 2015, 10, e0144235.	1.1	33
104	Prediction of glycerol removal from biodiesel using ammonium and phosphunium based deep eutectic solvents using artificial intelligence techniques. Chemometrics and Intelligent Laboratory Systems, 2012, 118, 193-199.	1.8	32
105	Generation of Superoxide Ion in Pyridinium, Morpholinium, Ammonium, and Sulfonium-Based Ionic Liquids and the Application in the Destruction of Toxic Chlorinated Phenols. Industrial & Destruction of Toxic Chloridae Phenols. Industrial & D	1.8	32
106	An investigation of the reaction between 1-butyl-3-methylimidazolium trifluoromethanesulfonate and superoxide ion. Journal of Molecular Liquids, 2013, 181, 44-50.	2.3	32
107	Comparison of a plant based natural surfactant with SDS for washing of As(V) from Fe rich soil. Journal of Environmental Sciences, 2013, 25, 2247-2256.	3.2	32
108	Performance evaluation of vanadium (IV) transport through supported ionic liquid membrane. Journal of the Taiwan Institute of Chemical Engineers, 2013, 44, 337-342.	2.7	32

#	Article	IF	CITATIONS
109	Immobilized marine algal biomass for multiple cycles of copper adsorption and desorption. Separation and Purification Technology, 2000, 19, 39-42.	3.9	30
110	The application of colloidal gas aphrons in the recovery of fine cellulose fibres from paper mill wastewater. Bioresource Technology, 1998, 64, 199-204.	4.8	29
111	Adsorption of Ni(SO4) on Malaysian rubber-wood ash. Bioresource Technology, 2000, 72, 153-158.	4.8	29
112	A quantum chemical study on the molecular interaction between pyrrole and ionic liquids. Journal of Molecular Liquids, 2014, 194, 20-29.	2.3	29
113	Modeling Batch Equilibrium and Kinetics of Copper Removal by Crab Shell. Separation Science and Technology, 2003, 38, 3927-3950.	1.3	28
114	Analytical Solutions to the Near-Neutral Atmospheric Surface Energy Balance with and without Heat Storage for Urban Climatological Studies. Journal of Applied Meteorology and Climatology, 1991, 30, 413-424.	1.7	26
115	Emulsion stabilization using ionic liquid [BMIM]+[NTf2]â°' and performance evaluation on the extraction of chromium. Journal of Hazardous Materials, 2011, 195, 55-61.	6.5	25
116	Generation of superoxide ion in 1-butyl-1-methylpyrrolidinium trifluoroacetate and its application in the destruction of chloroethanes. Journal of Molecular Liquids, 2012, 167, 28-33.	2.3	25
117	Solubility of Sodium Chloride in Ionic Liquids. Industrial & Engineering Chemistry Research, 2013, 52, 11488-11493.	1.8	25
118	Stability and performance enhancements of Electrokinetic-Fenton soil remediation. Reviews in Environmental Science and Biotechnology, 2014, 13, 251-263.	3.9	25
119	Desorption of Copper from Polyvinyl Alcohol-Immobilized Seaweed Biomass. Acta Biotechnologica, 2001, 21, 295-306.	1.0	24
120	The Effect of Gas Sparging in Cross-Flow Microfiltration of 2,3-Butanediol Fermentation Broth. Engineering in Life Sciences, 2005, 5, 54-57.	2.0	23
121	A comparative study of biopolymers and alum in the separation and recovery of pulp fibres from paper mill effluent by flocculation. Journal of Environmental Sciences, 2014, 26, 1851-1860.	3.2	23
122	Facile Route for Fuel Desulfurization Using Generated Superoxide Ion in Ionic Liquids. Industrial & Engineering Chemistry Research, 2015, 54, 12263-12269.	1.8	23
123	Enhanced removal of lead from contaminated soil by polyol-based deep eutectic solvents and saponin. Journal of Contaminant Hydrology, 2016, 194, 17-23.	1.6	23
124	Liquid–Liquid Equilibria for Binary Azeotrope Mixtures of Benzene and Alcohols Using Choline Chloride-Based Deep Eutectic Solvents. Journal of Chemical & Engineering Data, 2018, 63, 613-624.	1.0	23
125	An improvement to the basic energy balance model for urban thermal environment analysis. Energy and Buildings, 1990, 14, 143-152.	3.1	22
126	Cyclic Voltammetry of Metallic Acetylacetonate Salts in Quaternary Ammonium and Phosphonium Based Deep Eutectic Solvents. Journal of Solution Chemistry, 2013, 42, 2329-2341.	0.6	22

#	Article	IF	CITATIONS
127	Arsenic removal from soil with high iron content using a natural surfactant and phosphate. International Journal of Environmental Science and Technology, 2015, 12, 617-632.	1.8	22
128	Immobilization of urease using Amberlite MB-1. Bioprocess and Biosystems Engineering, 1997, 17, 355.	0.5	21
129	Performance Evaluation of Two-Stage Electrokinetic Washing as Soil Remediation Method for Lead Removal using Different Wash Solutions. Electrochimica Acta, 2014, 147, 9-18.	2.6	21
130	Remediation of Pb/Cr co-contaminated soil using electrokinetic process and approaching electrode technique. Environmental Science and Pollution Research, 2016, 23, 546-555.	2.7	21
131	Immobilization of urease on vermiculite. Bioprocess and Biosystems Engineering, 1997, 16, 375.	0.5	20
132	Prediction of protein breakthrough behavior using simplified analytical solutions. Separation and Purification Technology, 2007, 53, 189-197.	3.9	20
133	Generation and stability of superoxide ion in tris(pentafluoroethyl)trifluorophosphate anion-based ionic liquids. Journal of Fluorine Chemistry, 2012, 142, 83-89.	0.9	20
134	Esterification of sludge palm oil using trifluoromethanesulfonic acid for preparation of biodiesel fuel. Korean Journal of Chemical Engineering, 2013, 30, 1229-1234.	1.2	20
135	Effects of operating parameters on the performance of washing–electrokinetic two stage process as soil remediation method for lead removal. Separation and Purification Technology, 2015, 156, 403-413.	3.9	20
136	Quantitative Analysis of Copper Biosorption by the Microalga Chlorella vulgaris. Environmental Engineering Science, 2004, 21, 139-147.	0.8	19
137	Elimination of All Free Glycerol and Reduction of Total Glycerol from Palm Oil-Based Biodiesel Using Non-Glycerol Based Deep Eutectic Solvents. Separation Science and Technology, 2013, 48, 1184-1193.	1.3	18
138	Application of a rotating packed bed contactor for removal of Direct Red 23 by adsorption. Desalination and Water Treatment, 2016, 57, 13518-13526.	1.0	18
139	Superoxide Ion as Oxidative Desulfurizing Agent for Aromatic Sulfur Compounds in Ionic Liquid Media. ACS Sustainable Chemistry and Engineering, 2017, 5, 1854-1863.	3.2	18
140	Liquid-liquid equilibria data for the separation of ethylbenzene/styrene mixtures using ammonium-based deep eutectic solvents. Journal of Chemical Thermodynamics, 2019, 135, 296-304.	1.0	18
141	Application of colloidal gas aphron suspensions produced from Sapindus mukorossi for arsenic removal from contaminated soil. Chemosphere, 2015, 119, 355-362.	4.2	17
142	Characterization of tetraethylene glycol-based deep eutectic solvents and their potential application for dissolving unsaturated fatty acids. Journal of Molecular Liquids, 2020, 312, 113284.	2.3	17
143	Particle-bubble attachment in yeast flotation by colloidal gas aphrons. Bioprocess and Biosystems Engineering, 2000, 22, 0333-0336.	1.7	16
144	Hexavalent Chromium Adsorption by a Novel Activated Carbon Prepared by Microwave Activation. BioResources, 2013, 9, .	0.5	16

#	Article	IF	CITATIONS
145	Vapor pressure of aqueous methyldiethanolamine mixed with ionic liquids. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45, 380-386.	2.7	16
146	Clarification of yeast by colloidal gas aphrons. Biotechnology Letters, 1995, 9, 403-408.	0.5	15
147	Densities and Viscosities of Binary Blends of Methyl Esters + Ethyl Esters and Ternary Blends of Methyl Esters + Ethyl Esters + Diesel Fuel from $T = (293.15 \text{ to } 358.15) \text{ K. Journal of Chemical & Engineering Data, } 2012, 57, 1387-1395.$	1.0	15
148	Eutectic mixture-functionalized carbon nanomaterials for selective amperometric detection of nitrite using modified glassy carbon electrode. Journal of Electroanalytical Chemistry, 2018, 812, 107-114.	1.9	15
149	Simulation of Deep Eutectic Solvents' Interaction with Membranes of Cancer Cells Using COSMO-RS. Journal of Physical Chemistry B, 2020, 124, 9086-9094.	1.2	15
150	Ternary glycerol-based deep eutectic solvents: Physicochemical properties and enzymatic activity. Chemical Engineering Research and Design, 2021, 169, 77-85.	2.7	15
151	Solubility of sodium chloride in phosphonium-based deep eutectic solvents. Journal of Molecular Liquids, 2014, 199, 344-351.	2.3	14
152	Growth and optimization of carbon nanotubes in powder activated carbon for an efficient removal of methylene blue from aqueous solution. Environmental Technology (United Kingdom), 2019, 40, 2400-2415.	1.2	14
153	Treatment of industrial low grade palm oil via esterification reaction using sonoreactor. Journal of Industrial and Engineering Chemistry, 2014, 20, 2066-2070.	2.9	13
154	A Solid Organic Acid Catalyst for the Pretreatment of Low-Grade Crude Palm Oil and Biodiesel Production. International Journal of Green Energy, 2014, 11, 129-140.	2.1	13
155	Optimization of pulp fibre removal by flotation using colloidal gas aphrons generated from a natural surfactant. Journal of the Taiwan Institute of Chemical Engineers, 2015, 53, 15-21.	2.7	13
156	The formation of hybrid carbon nanomaterial by chemical vapor deposition: an efficient adsorbent for enhanced removal of methylene blue from aqueous solution. Water Science and Technology, 2018, 77, 1714-1723.	1.2	13
157	Application of deep eutectic solvent as novel co-solvent for oil extraction from flaxseed using sonoenergy. Industrial Crops and Products, 2022, 176, 114242.	2.5	13
158	Effects of colloidal fouling and gas sparging on microfiltration of yeast suspension. Bioprocess and Biosystems Engineering, 2005, 27, 407-413.	1.7	12
159	Kinetic study of 2,3-butanediol production by Klebsiella oxytoca. Journal of Bioscience and Bioengineering, 1990, 70, 235-240.	0.9	10
160	Treatment of acidic palm oil for fatty acid methyl esters production. Chemical Papers, 2012, 66, .	1.0	10
161	Biodiesel Production from Acidic Crude Palm Oil Using Perchloric Acid. Energy Procedia, 2014, 61, 2745-2749.	1.8	10
162	Kinetics of superoxide ion in dimethyl sulfoxide containing ionic liquids. lonics, 2015, 21, 719-728.	1.2	10

#	Article	IF	Citations
163	Adsorptive removal of residual catalyst from palm biodiesel: Application of response surface methodology. Hemijska Industrija, 2012, 66, 373-380.	0.3	10
164	Diethylene glycol based deep eutectic solvents and their physical properties. Studia Universitatis Babes-Bolyai Chemia, 2017, 62, 433-450.	0.1	10
165	N,N-diethylethanolammonium chloride based DES-functionalized carbon nanotubes for arsenic removal from aqueous solution. , 0, 74, $163-173$.		10
166	Protein adsorption on Ion exchange resin: Estimation of equilibrium isotherm parameters from batch kinetic data. Biotechnology and Bioprocess Engineering, 2006, 11, 61-66.	1.4	9
167	Experimental and theoretical investigation of parametric sensitivity and dynamics of a continuous stirred tank reactor for acid catalyzed hydrolysis of acetic anhydride. Computers and Chemical Engineering, 2011, 35, 1295-1303.	2.0	9
168	Removal of nickel from water using rotating packed bed contactor: Parametric studies and mode of operations. Journal of Water Process Engineering, 2020, 36, 101286.	2.6	9
169	MODELLING OF PROTEIN ADSORPTION IN A FIXED-BED: SINGLE AND TWO-SOLUTE BREAKTHROUGH BEHAVIOUR. Chemical Engineering Communications, 1997, 161, 45-63.	1.5	8
170	Urease immobilized on nylon: preparation and properties. Bioprocess and Biosystems Engineering, 1997, 17, 241.	0.5	8
171	Mass transfer correlation in flotation of palm oil by colloidal gas aphrons. Bioprocess and Biosystems Engineering, 1999, 21, 401.	0.5	8
172	An Observation on Sludge Granulation in an Enhanced Biological Phosphorus Removal Process. Water Environment Research, 2012, 84, 3-8.	1.3	8
173	Application of Taguchi method for the optimization of Fe ²⁺ removal from contaminated synthetic groundwater using a rotating packed bed contactor. Water and Environment Journal, 2020, 34, 57-65.	1.0	8
174	Electrochemical double layer capacitor based on cellulose-PVA hybrid electrolyte. Ionics, 2005, 11, 464-467.	1.2	7
175	Input Multiplicity Analysis in a Nonâ€lsothermal CSTR for Acid atalyzed Hydrolysis of Acetic Anhydride. Chemical Engineering and Technology, 2010, 33, 499-507.	0.9	7
176	Determination of lumped rate coefficients of proteins: Effect of adsorption. Chemical Engineering and Technology, 1996, 19, 137-142.	0.9	6
177	STUDIES ON FIXED-BED BIOSORPTION AND ELUTION OF COPPER USING POLYVINYL ALCOHOL-IMMOBILIZED SEAWEED BIOMASS. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2002, 37, 1621-1632.	0.9	6
178	Determination of Coenzyme Q ₉ and Q ₁₀ in Developing Palm Fruits. JAOCS, Journal of the American Oil Chemists' Society, 2009, 86, 201-205.	0.8	6
179	A review exploring the adsorptive removal of organic micropollutants on tailored hierarchical carbon nanotubes. Toxicological and Environmental Chemistry, 2021, 103, 282-325.	0.6	6
180	Electroreduction of CO ₂ and Quantification in New Transition-Metal-Based Deep Eutectic Solvents Using Single-Atom Ag Electrocatalyst. ACS Omega, 2022, 7, 14102-14112.	1.6	6

#	Article	IF	Citations
181	Simulation studies on simultaneous saccharification and fermentation of cellulose to ethanol. The Chemical Engineering Journal, 1990, 45, B27-B34.	0.4	5
182	Modeling the effect of wall capacitance on the dynamics of an exothermic reaction system in a batch reactor. International Journal of Heat and Mass Transfer, 2011, 54, 439-446.	2.5	5
183	Agro-industrial acidic oil as a renewable feedstock for biodiesel production using (1R)-(\hat{a} €")-camphor-10-sulfonic acid. Chemical Engineering Science, 2014, 116, 223-227.	1.9	5
184	Application of a Novel Catalyst in the Esterification of Mixed Industrial Palm Oil for Biodiesel Production. Bioenergy Research, 2015, 8, 459-463.	2.2	5
185	Zinc Removal from Soil by Washing with Saponin Obtained from Sapindus mukorossi. Journal of Environmental Analytical Chemistry, 2018, 05, .	0.3	5
186	The development of new homogenous and heterogeneous catalytic processes for the treatment of low grade palm oil. Journal of Molecular Liquids, 2021, 344, 117574.	2.3	5
187	Encapsulated deep eutectic solvent for esterification of free fatty acid. Biomass Conversion and Biorefinery, 2022, 12, 3725-3735.	2.9	5
188	Biomass Acclimatization to Sequentially Varying Substrates in an Upflow Anaerobic Sludge Blanket (UASB) Bioreactor. Water Quality Research Journal of Canada, 2006, 41, 437-448.	1.2	4
189	Effect of seeding sludge type and hydrodynamic shear force on the aerobic sludge granulation in sequencing batch airlift reactors. Asia-Pacific Journal of Chemical Engineering, 2009, 4, 826-831.	0.8	4
190	Remediation of Arsenic Contaminated Soil Using Phosphate and Colloidal Gas Aphron Suspensions Produced from Sapindus mukorossi. Bulletin of Environmental Contamination and Toxicology, 2017, 98, 366-372.	1.3	4
191	Production of Fatty Acid Methyl Ester from Low Grade Palm Oil Using Eutectic Solvent Based on Benzyltrimethylammonium Chloride. IOP Conference Series: Materials Science and Engineering, 2017, 210, 012012.	0.3	4
192	Modeling the performance of protein-A affinity columns using asymptotic solutions. Separation and Purification Technology, 2009, 68, 279-282.	3.9	3
193	Electrochemical Generation of Superoxide Ion in Ionic Liquid 1-(3-Methoxypropyl)-1-Methylpiperidinium Bis (Trifluoromethylsulfonyl) Imide. IOP Conference Series: Materials Science and Engineering, 2011, 17, 012028.	0.3	3
194	Development of a Stepping Force Analgesic Meter for a Rat Arthritic Model. Sensors, 2011, 11, 5058-5070.	2.1	3
195	Description of sigmoid adsorption isotherms of water pollutants by the Aranovich–Donohue equation. Separation Science and Technology, 0, , 1-8.	1.3	3
196	A study on the effect of operating parameters on the cross-flow microfiltration of yeasts. , 1997, 7, 17-23.		2
197	The Effect of Volume Shape Factor on the Crystal Size Distribution of Fragments due to Attrition. Crystal Research and Technology, 1999, 34, 491-502.	0.6	2
198	Performance evaluation of natural iron-rich sandy soil as a low-cost adsorbent for removal of lead from water. Desalination and Water Treatment, 2016, 57, 5013-5024.	1.0	2

#	Article	IF	CITATIONS
199	Selective extraction of benzene from benzene–cyclohexane mixture using 1-ethyl-3-methylimidazolium tetrafluoroborate ionic liquid. AIP Conference Proceedings, 2019, , .	0.3	2
200	Natural and low-cost deep eutectic solvent for soap removal from crude biodiesel using low stirring extraction system. Biomass Conversion and Biorefinery, 0 , 1 .	2.9	2
201	The effect of pore size distribution on the separation efficiency in surface force pore-flow model-system: isopropanol-water. Bioprocess and Biosystems Engineering, 1999, 21, 349.	0.5	1
202	Numerical Simulation of Separation Factor of NaCl in Surface Force Pore Flow Model. Chemical Engineering and Technology, 2006, 29, 1061-1065.	0.9	1
203	Winter Operation of Biofilters for Hydrogen Sulphide Removal. International Journal of Chemical Reactor Engineering, 2009, 7, .	0.6	1
204	Application of acidic ionic liquids for the treatment of acidic low grade palm oil for biodiesel production. Journal of Ionic Liquids, 2022, 2, 100023.	1.0	1
205	ACID EFFECTS ON TOLUENE-ACETONE-WATER SYSTEM. Chemical Engineering Communications, 1990, 89, 147-154.	1.5	0
206	Utilizing of 1-Hexyl-1-Methyl-Pyrrolidinium Bis (Trifluoromethyl-Sulfonyl) Imide as Medium for Electrochemical Generation of Superoxide Ion-Radical. IIUM Engineering Journal, 2011, 12, .	0.5	0