Vladimir A Vinokurov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2667890/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An assembly of organic-inorganic composites using halloysite clay nanotubes. Current Opinion in Colloid and Interface Science, 2018, 35, 42-50.	3.4	316
2	Formation of metal clusters in halloysite clay nanotubes. Science and Technology of Advanced Materials, 2017, 18, 147-151.	2.8	102
3	Paclitaxel Encapsulated in Halloysite Clay Nanotubes for Intestinal and Intracellular Delivery. Journal of Pharmaceutical Sciences, 2017, 106, 3131-3139.	1.6	98
4	Application of halloysite clay nanotubes as a pharmaceutical excipient. International Journal of Pharmaceutics, 2017, 521, 267-273.	2.6	94
5	Mesoporous Metal Catalysts Templated on Clay Nanotubes. Bulletin of the Chemical Society of Japan, 2019, 92, 61-69.	2.0	89
6	Fucoxanthin production by heterokont microalgae. Algal Research, 2017, 24, 387-393.	2.4	88
7	Halloysite Nanoclay Based CdS Formulations with High Catalytic Activity in Hydrogen Evolution Reaction under Visible Light Irradiation. ACS Sustainable Chemistry and Engineering, 2017, 5, 11316-11323.	3.2	83
8	Core/Shell Ruthenium–Halloysite Nanocatalysts for Hydrogenation of Phenol. Industrial & Engineering Chemistry Research, 2017, 56, 14043-14052.	1.8	83
9	Interfacial Self-Assembly in Halloysite Nanotube Composites. Langmuir, 2019, 35, 8646-8657.	1.6	82
10	Clay nanotube-metal core/shell catalysts for hydroprocesses. Chemical Society Reviews, 2021, 50, 9240-9277.	18.7	73
11	Naturally derived nano- and micro-drug delivery vehicles: halloysite, vaterite and nanocellulose. New Journal of Chemistry, 2020, 44, 5638-5655.	1.4	72
12	Antimicrobial Applications of Clay Nanotube-Based Composites. Nanomaterials, 2019, 9, 708.	1.9	71
13	Pd Nanoparticles in Dendrimers Immobilized on Silica–Polyamine Composites as Catalysts for Selective Hydrogenation. ACS Applied Materials & Interfaces, 2014, 6, 8807-8816.	4.0	65
14	Stabilized Dye–Pigment Formulations with Platy and Tubular Nanoclays. Advanced Functional Materials, 2018, 28, 1703553.	7.8	64
15	Nanoparticles Formed onto/into Halloysite Clay Tubules: Architectural Synthesis and Applications. Chemical Record, 2018, 18, 858-867.	2.9	56
16	Halloysite nanotube-based cobalt mesocatalysts for hydrogen production from sodium borohydride. Journal of Solid State Chemistry, 2018, 268, 182-189.	1.4	54
17	Templated self-assembly of ordered mesoporous silica on clay nanotubes. Chemical Communications, 2019, 55, 5507-5510.	2.2	50
18	Ru/CdS Quantum Dots Templated on Clay Nanotubes as Visibleâ€Lightâ€Active Photocatalysts: Optimization of S/Cd Ratio and Ru Content. Chemistry - A European Journal. 2020. 26. 13085-13092.	1.7	48

#	Article	IF	CITATIONS
19	Fluorescence and Cytotoxicity of Cadmium Sulfide Quantum Dots Stabilized on Clay Nanotubes. Nanomaterials, 2018, 8, 391.	1.9	43
20	Formation and agglomeration of gas hydrates in gas – organic liquid – water systems in a stirred reactor: Role of resins/asphaltenes/surfactants. Journal of Petroleum Science and Engineering, 2019, 176, 952-961.	2.1	43
21	Laminar Burning Velocities of Dimethyl Carbonate with Air. Energy & Fuels, 2013, 27, 5513-5517.	2.5	42
22	Methane Hydrate Formation in Halloysite Clay Nanotubes. ACS Sustainable Chemistry and Engineering, 2020, 8, 7860-7868.	3.2	37
23	Highly stable and anti-coking Ni/MoCeZr/MgAl2O4-MgO complex support catalysts for CO2 reforming of CH4: Effect of the calcination temperature. Energy Conversion and Management, 2019, 179, 166-177.	4.4	34
24	Mesoporous additive-free vaterite CaCO3 crystals of untypical sizes: From submicron to Giant. Materials and Design, 2021, 197, 109220.	3.3	34
25	A new method for the replacement of CH4 with CO2 in natural gas hydrate production. Natural Gas Industry B, 2016, 3, 445-451.	1.4	33
26	Ruthenium Catalysts Templated on Mesoporous MCM-41 Type Silica and Natural Clay Nanotubes for Hydrogenation of Benzene to Cyclohexane. Catalysts, 2020, 10, 537.	1.6	33
27	Oil Sludge Treatment Processes. Chemistry and Technology of Fuels and Oils, 2015, 51, 506-515.	0.2	32
28	Synergistic effect of salts and methanol in thermodynamic inhibition of sII gas hydrates. Journal of Chemical Thermodynamics, 2019, 137, 119-130.	1.0	29
29	Development of Marine Antifouling Epoxy Coating Enhanced with Clay Nanotubes. Materials, 2019, 12, 4195.	1.3	29
30	Highly Effective Functionalized Coatings with Antibacterial and Antifouling Properties. ACS Sustainable Chemistry and Engineering, 2020, 8, 8928-8937.	3.2	29
31	Ruthenium-Loaded Halloysite Nanotubes as Mesocatalysts for Fischer–Tropsch Synthesis. Molecules, 2020, 25, 1764.	1.7	29
32	Micro-mesoporous MCM-41/ZSM-5 supported Pt and Pd catalysts for hydroisomerization of C-8 aromatic fraction. Applied Catalysis A: General, 2020, 603, 117764.	2.2	28
33	Palladium nanoparticles encapsulated in a dendrimer networks as catalysts for the hydrogenation of unsaturated hydrocarbons. Journal of Molecular Catalysis A, 2015, 397, 1-18.	4.8	27
34	Spectroscopy of Scattered Light for the Characterization of Micro and Nanoscale Objects in Biology and Medicine. Applied Spectroscopy, 2014, 68, 133-154.	1.2	26
35	Core-shell nanoarchitecture: Schiff-base assisted synthesis of ruthenium in clay nanotubes. Pure and Applied Chemistry, 2018, 90, 825-832.	0.9	26
36	Visual observation of gas hydrates nucleation and growth at a water – organic liquid interface. Journal of Crystal Growth, 2018, 485, 54-68.	0.7	26

#	Article	IF	CITATIONS
37	Nucleation of gas hydrates in multiphase systems with several types of interfaces. Journal of Thermal Analysis and Calorimetry, 2018, 134, 783-795.	2.0	26
38	Aluminosilicates supported La-containing sulfur reduction additives for FCC catalyst: Correlation between activity, support structure and acidity. Catalysis Today, 2019, 329, 135-141.	2.2	26
39	Nanoreactors based on hydrophobized tubular aluminosilicates decorated with ruthenium: Highly active and stable catalysts for aromatics hydrogenation. Catalysis Today, 2021, 378, 33-42.	2.2	26
40	The pursuit of a more powerful thermodynamic hydrate inhibitor than methanol. Dimethyl sulfoxide as a case study. Chemical Engineering Journal, 2021, 423, 130227.	6.6	26
41	New approach to characterization of hybrid nanocomposites. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 521, 251-259.	2.3	25
42	Hydrodeoxygenation of bio-derived anisole to cyclohexane over bi-functional IM-5 zeolite supported Ni catalysts. Sustainable Energy and Fuels, 2019, 3, 3462-3472.	2.5	25
43	Gas hydrate nucleation and growth in the presence of water-soluble polymer, nonionic surfactants, and their mixtures. Journal of Natural Gas Science and Engineering, 2020, 82, 103491.	2.1	25
44	Nanostructured Ruthenium Catalysts in Hydrogenation of Aromatic Compounds. Petroleum Chemistry, 2018, 58, 1221-1226.	0.4	24
45	Clay Composites for Thermal Energy Storage: A Review. Molecules, 2020, 25, 1504.	1.7	23
46	Simultaneous increase in cellular content and volumetric concentration of lipids in Bracteacoccus bullatus cultivated at reduced nitrogen and phosphorus concentrations. Journal of Applied Phycology, 2018, 30, 2237-2246.	1.5	22
47	The active site of syngas conversion into ethanol over Cu/ZnO/Al2O3 ternary catalysts in slurry bed. Journal of Catalysis, 2019, 380, 68-82.	3.1	22
48	Selective hydrogenation of terminal alkynes over palladium nanoparticles within the pores of amino-modified porous aromatic frameworks. Catalysis Today, 2020, 357, 176-184.	2.2	22
49	Fluorescent gold nanoclusters stabilized on halloysite nanotubes: in vitro study on cytotoxicity. Applied Clay Science, 2021, 207, 106106.	2.6	22
50	Architectural design of core–shell nanotube systems based on aluminosilicate clay. Nanoscale Advances, 2022, 4, 2823-2835.	2.2	22
51	Manganese and Cobalt Doped Hierarchical Mesoporous Halloysite-Based Catalysts for Selective Oxidation of p-Xylene to Terephthalic Acid. Catalysts, 2020, 10, 7.	1.6	21
52	Transition Metal Sulfides- and Noble Metal-Based Catalysts for N-Hexadecane Hydroisomerization: A Study of Poisons Tolerance. Catalysts, 2020, 10, 594.	1.6	21
53	Biodiesel fuel production by Aspergillus niger whole-cell biocatalyst in optimized medium. Mycoscience, 2018, 59, 147-152.	0.3	20
54	Phase equilibrium for clathrate hydrate formed in methaneÂ+ÂwaterÂ+Âethylene carbonate system. Fluid Phase Equilibria, 2017, 432, 1-9.	1.4	19

#	Article	IF	CITATIONS
55	Transport Asymmetry of Novel Bi-Layer Hybrid Perfluorinated Membranes on the Base of MF-4SC Modified by Halloysite Nanotubes with Platinum. Polymers, 2018, 10, 366.	2.0	19
56	Urea as a green thermodynamic inhibitor of sII gas hydrates. Chemical Engineering Journal, 2022, 429, 132386.	6.6	19
57	Alkylation of benzene with ethylene in the presence of dimethyldichlorosilane. Journal of Catalysis, 2017, 352, 75-82.	3.1	18
58	Isomerization of Xylenes in the Presence of Pt-Containing Catalysts Based on Halloysite Aluminosilicate Nanotubes. Russian Journal of Applied Chemistry, 2018, 91, 1353-1362.	0.1	18
59	Nanocellulose as a Component of Ultrafiltration Membranes. Petroleum Chemistry, 2018, 58, 923-933.	0.4	18
60	Carbon deposition behaviors in dry reforming of CH4 at elevated pressures over Ni/MoCeZr/MgAl2O4-MgO catalysts. Fuel, 2022, 310, 122449.	3.4	18
61	Amplification of surface-enhanced Raman scattering by the oxidation of capping agents on gold nanoparticles. RSC Advances, 2018, 8, 19051-19057.	1.7	17
62	A Study of Platinum Catalysts Based on Ordered Alâ€"ĐœĐ¡Đœ-41 Aluminosilicate and Natural Halloysite Nanotubes in Xylene Isomerization. Petroleum Chemistry, 2019, 59, 1226-1234.	0.4	17
63	Antibacterial properties and <i>in vivo</i> studies of tannic acid-stabilized silver–halloysite nanomaterials. Clay Minerals, 2020, 55, 112-119.	0.2	17
64	Oxidative desulfurization of hydrocarbon fuel with high olefin content. Petroleum Chemistry, 2015, 55, 571-574.	0.4	16
65	CdS Quantum Dots in Hierarchical Mesoporous Silica Templated on Clay Nanotubes: Implications for Photocatalytic Hydrogen Production. ACS Applied Nano Materials, 2022, 5, 605-614.	2.4	16
66	Dimethyl sulfoxide as a novel thermodynamic inhibitor of carbon dioxide hydrate formation. Chemical Engineering Science, 2022, 255, 117670.	1.9	16
67	Unexpected formation of sll methane hydrate in some water-in-oil emulsions: Different reasons for the same phenomenon. Journal of Natural Gas Science and Engineering, 2018, 60, 284-293.	2.1	15
68	Hexamethylenetetramine-assisted hydrothermal synthesis of efficient and stable Ni-MoCeZr-MgAl(O) catalysts for dry reforming of CH4: Effect of Ni content. Fuel, 2019, 254, 115562.	3.4	15
69	Ruthenium Catalysts on ZSM-5/MCM-41 Micro-Mesoporous Support for Hydrodeoxygenation of Guaiacol in the Presence of Water. Russian Journal of Applied Chemistry, 2019, 92, 1170-1178.	0.1	14
70	Cellulose Nanofibrils and Tubular Halloysite as Enhanced Strength Gelation Agents. Polymers, 2019, 11, 919.	2.0	14
71	Biodistribution of Quantum Dots-Labelled Halloysite Nanotubes: A Caenorhabditis elegans In Vivo Study. Materials, 2021, 14, 5469.	1.3	14
72	Facile synthesis of shape-stable phase-change composites <i>via</i> the adsorption of stearic acid onto cellulose microfibers. Materials Chemistry Frontiers, 2022, 6, 1033-1045.	3.2	14

#	Article	IF	CITATIONS
73	Porous Alginate Scaffolds Designed by Calcium Carbonate Leaching Technique. Advanced Functional Materials, 2022, 32, .	7.8	14
74	Selective Hydrogenation of Acetylene over Pd-Mn/Al2O3 Catalysts. Catalysts, 2020, 10, 624.	1.6	13
75	Nanoarchitectural approach for synthesis of highly crystalline zeolites with a low Si/Al ratio from natural clay nanotubes. Microporous and Mesoporous Materials, 2022, 330, 111622.	2.2	13
76	Hydrogenation of aromatic hydrocarbons in the presence of dibenzothiophene over platinum-palladium catalysts based on Al-SBA-15 aluminosilicates. Petroleum Chemistry, 2014, 54, 94-99.	0.4	12
77	Rapid Optimization of Metal Nanoparticle Surface Modification with High-Throughput Gel Electrophoresis. ACS Nano, 2014, 8, 1449-1456.	7.3	12
78	New strains of basidiomycetes that produce bioethanol from lignocellulose biomass. Applied Biochemistry and Microbiology, 2016, 52, 638-642.	0.3	12
79	Effect of Base Oil Composition on the Low-Temperature Properties of Polyurea Greases. Petroleum Chemistry, 2017, 57, 1177-1181.	0.4	12
80	Acid and Oxidative Treatment of Raw Material for the Production of Nanofibrillar Cellulose. Chemistry and Technology of Fuels and Oils, 2018, 54, 564-568.	0.2	12
81	Carbon chain growth by formyl coupling over the Cu/Ĵ³-AlOOH(001) surface in syngas conversion. Physical Chemistry Chemical Physics, 2019, 21, 148-159.	1.3	12
82	Oxidation of p-Xylene. Russian Journal of Applied Chemistry, 2018, 91, 707-727.	0.1	11
83	Hydroconversion of Aromatic Hydrocarbons over Bimetallic Catalysts. Catalysts, 2019, 9, 384.	1.6	11
84	Perfluorinated hybrid membranes modified by metal decorated clay nanotubes. Journal of Membrane Science, 2019, 582, 172-181.	4.1	11
85	Effect of Base Oil Nature on the Operational Properties of Low-Temperature Greases. ACS Omega, 2020, 5, 11946-11954.	1.6	11
86	Catalytic Alkylation of Aniline with Methanol. Kinetics and Catalysis, 2005, 46, 376-379.	0.3	10
87	Hydrogenation of aromatic hydrocarbons over nickel–tungsten sulfide catalysts containing mesoporous aluminosilicates of different nature. Petroleum Chemistry, 2016, 56, 599-606.	0.4	10
88	Influence of Fractions Isolated from Crude Oils and Refined Petroleum Product on Decomposition Process of Methane Hydrate. Energy & amp; Fuels, 2018, 32, 11279-11288.	2.5	10
89	CuZnAlOOH catalysts with Cu0/Cu+ constructed by two-step hydrolysis for ethanol production from syngas. Fuel, 2022, 322, 124111.	3.4	10
90	Prokaryotic and eukaryotic toxicity of halloysite decorated with photoactive nanoparticles. Chemical Communications, 2022, 58, 7719-7729.	2.2	10

#	Article	IF	CITATIONS
91	Technical Aspects of Ethyl <i>Tert</i> â€Butyl Ether (ETBE) for Largeâ€Scale Use as Gasoline Improver. Energy Technology, 2014, 2, 194-204.	1.8	9
92	Inhibiting Gas Hydrate Formation by Polymer–Monoethylene Glycol Mixture. Chemistry and Technology of Fuels and Oils, 2016, 52, 43-51.	0.2	9
93	Synthesis of large uniform gold and core–shell gold–silver nanoparticles: Effect of temperature control. Russian Journal of Physical Chemistry A, 2016, 90, 152-157.	0.1	9
94	Antiknock Properties of Blends of 2-Methylfuran and 2,5-Dimethylfuran with Reference Fuel. Chemistry and Technology of Fuels and Oils, 2017, 53, 147-153.	0.2	9
95	Generic Nature of Interfacial Phenomena in Solutions of Nonionic Hydrotropes. Langmuir, 2019, 35, 13480-13487.	1.6	9
96	Bizeolite Pt/ZSM-5:ZSM-12/Al2O3 catalyst for hydroisomerization of C-8 fraction with various ethylbenzene content. Catalysis Today, 2021, 378, 83-95.	2.2	9
97	Structure and Properties of Cellulose/Mycelium Biocomposites. Polymers, 2022, 14, 1519.	2.0	9
98	Homo- and Copolymers of N-Acryloylpyrrolidine and N-Vinylpyrrolidone as Kinetic Inhibitors of Hydrate Formation. Chemistry and Technology of Fuels and Oils, 2011, 46, 417-423.	0.2	8
99	Ultrashort laser pulse-induced anti-Stokes photoluminescence of hot electrons in gold nanorods. Laser Physics Letters, 2014, 11, 075902.	0.6	8
100	Efficient catalysts for benzene alkylation with olefins. Catalysis Communications, 2016, 82, 1-6.	1.6	8
101	Kinetic Inhibition of Hydrate Formation by Polymeric Reagents: Effect of Pressure and Structure of Gas Hydrates. Chemistry and Technology of Fuels and Oils, 2016, 51, 679-687.	0.2	8
102	Nanocellulose as Modifier for Hollow Fiber Ultrafiltration PSF Membranes. Key Engineering Materials, 0, 816, 238-243.	0.4	8
103	Interfacial tension and phase properties of water – Hydrotrope – Oil solutions: Water – 2-butoxyethanol – Toluene. Journal of Molecular Liquids, 2021, 344, 117683.	2.3	8
104	Isomerization of Xylenes (a Review). Petroleum Chemistry, 2021, 61, 1158-1177.	0.4	8
105	Kinetics and mechanism of diphenylamine synthesis by the condensation of aniline with oxygen-containing compounds. Kinetics and Catalysis, 2007, 48, 292-297.	0.3	7
106	Polymer–Methanol Combines Inhibition of Gas Hydrate Formation. Chemistry and Technology of Fuels and Oils, 2016, 52, 162-170.	0.2	7
107	Plasma-chemical Processing of Natural Gas. Chemistry and Technology of Fuels and Oils, 2005, 41, 112-115.	0.2	6
108	Photobioreactor operation condition optimization for high-energy cyanobacterial biomass synthesis to produce third-generation biofuels. Chemistry and Technology of Fuels and Oils, 2013, 49, 1-4.	0.2	6

#	Article	IF	CITATIONS
109	Methanolysis of Sunflower Oil Using Immobilized Fungal Cells as Biocatalyst. Chemistry and Technology of Fuels and Oils, 2015, 50, 449-452.	0.2	6
110	Transport Properties of Novel Hybrid Cation-Exchange Membranes on the Base of MF-4SC and Halloysite Nanotubes. Journal of Materials Science and Chemical Engineering, 2015, 03, 58-65.	0.2	6
111	Prospects for the use of new basidiomycete strains for the direct conversion of lignocellulose into ethanol. Applied Biochemistry and Microbiology, 2017, 53, 557-561.	0.3	6
112	Promotional Influence of Hydroxyl Complexing Agent on Ethanol Synthesis from Syngas Over CuZnAl Catalysts Without Other Metal Promoters. Catalysis Letters, 2018, 148, 3477-3485.	1.4	6
113	Effect of Thickener Nature on Properties of Polyurealubricant Compositions Based on Esters. Chemistry and Technology of Fuels and Oils, 2020, 55, 689-696.	0.2	6
114	Formation of ruthenium nanoparticles inside aluminosilicate nanotubes and their catalytic activity in aromatics hydrogenation: the impact of complexing agents and reduction procedure. Pure and Applied Chemistry, 2020, 92, 909-918.	0.9	6
115	CO ₂ hydrogenation to dimethyl ether over In ₂ O ₃ catalysts supported on aluminosilicate halloysite nanotubes. Green Processing and Synthesis, 2021, 10, 594-605.	1.3	6
116	Natural Nanoclay-Based Silver–Phosphomolybdic Acid Composite with a Dual Antimicrobial Effect. ACS Omega, 2022, 7, 6728-6736.	1.6	6
117	Sulfur as a Structural Element in Calamitic Liquid Crystals. 2 Terminal, Linking, Axial and Lateral Substitutions. 3 Sulfur-Containing Rings. Molecular Crystals and Liquid Crystals, 2010, 518, 40-59.	0.4	5
118	Lipids of Basidial Fungi as Feedstock for Biodiesel Fuel Production. Chemistry and Technology of Fuels and Oils, 2015, 51, 411-421.	0.2	5
119	Synthesis and prediction of transport properties of hybrid bilayer ion-exchange membranes. Surface Innovations, 2017, 5, 130-137.	1.4	5
120	Freezing-induced loading of Au nanoparticles into halloysite nanotubes. Materials Letters, 2021, 291, 129506.	1.3	5
121	Micro-Mesoporous Catalyst Based on Dealuminated Halloysite Nanotubes for Isomerization of C-8 Aromatic Fraction. Petroleum Chemistry, 2021, 61, 1085-1095.	0.4	5
122	Natural aluminosilicate nanotubes loaded with RuCo as nanoreactors for Fischer-Tropsch synthesis. Science and Technology of Advanced Materials, 2022, 23, 17-30.	2.8	5
123	Zeta Potential of Nanosized Particles of Cellulose as a Function of pH. Chemistry and Technology of Fuels and Oils, 2022, 57, 913-916.	0.2	5
124	Studies of transnitrilation mechanism in the presence of trifluoroacetic acid. Reaction Kinetics and Catalysis Letters, 1989, 39, 449-455.	0.6	4
125	Activation of nitriles by trifluoroacetic acid in exchange reactions of functional groups. Reaction Kinetics and Catalysis Letters, 1989, 40, 313-317.	0.6	4
126	Intermolecular interactions in a disperse fuel system and their contribution to the mechanism of action of diesel fuel additives. Petroleum Chemistry, 2011, 51, 363-369.	0.4	4

#	Article	IF	CITATIONS
127	Catalytic Cracking of Petroleum Feedstock in the Presence of Additives Derived from Cross–Linked Mesoporous Oxides for Reduction of the Sulfur Content in Liquid Products. Chemistry and Technology of Fuels and Oils, 2016, 52, 171-174.	0.2	4
128	Analysis of Sour Oil Ozonation Products by Ultra-High Resolution Mass-Spectrometry. Petroleum Chemistry, 2017, 57, 1012-1017.	0.4	4
129	Influence of petroleum fractions on the process of methane hydrate self-preservation. Mendeleev Communications, 2018, 28, 533-535.	0.6	4
130	Sepiolite Nanocarriers as a Matrix for Controlled Thermal Energy Storage. ACS Omega, 2021, 6, 25828-25834.	1.6	4
131	Dataset for the dimethyl sulfoxide as a novel thermodynamic inhibitor of carbon dioxide hydrate formation. Data in Brief, 2022, 42, 108289.	0.5	4
132	Kinetics of exchange reactions between substituted benzoic acid amides and aliphatic nitriles. Reaction Kinetics and Catalysis Letters, 1989, 38, 345-349.	0.6	3
133	Production of energy-dense biomass of microalgae Botryococcus braunii and Chlorella in a photobioreactor. Chemistry and Technology of Fuels and Oils, 2012, 48, 8-12.	0.2	3
134	Synthesis of gold nanoparticles in organogels. Mendeleev Communications, 2014, 24, 53-54.	0.6	3
135	Ethanol Production from Lignocellulosic Biomass Using Xylotrophic Basidiomycetes. Chemistry and Technology of Fuels and Oils, 2015, 51, 516-525.	0.2	3
136	Synthesis of 5-Hydroxymethylfurfuraldehyde from Fructose in Aqueous—Organic Media. Chemistry and Technology of Fuels and Oils, 2015, 50, 472-474.	0.2	3
137	Natural Ceramic Nanotube Substrates for Surface-Enhanced Raman Spectroscopy. Jom, 2015, 67, 2877-2880.	0.9	3
138	Influence of Electromagnetic Radiation on Group and Fractional Composition of Oils and Oil Residues. Chemistry and Technology of Fuels and Oils, 2015, 51, 333-338.	0.2	3
139	Synthesis of bimetallic gold/silver nanoparticles via in situ seeding. Russian Journal of Physical Chemistry A, 2017, 91, 141-144.	0.1	3
140	Oxidative and Radiative Pretreatment of Lignocellulose Feedstock for Producing Biofuel. Chemistry and Technology of Fuels and Oils, 2017, 53, 633-637.	0.2	3
141	Bimetallic Sulfur Reduction Additives Based on Alumosilicate of Al-MCM-41 Type For Cracking Catalysts: Desulfurazing Activity vs. Ratio of Components in a Support. Russian Journal of Applied Chemistry, 2019, 92, 562-568.	0.1	3
142	Application of Multidimensional Analysis Methods to Dead Oil Characterization on the Basis of Data on Thermal Field-Flow Fractionation of Native Asphaltene Nanoparticles. Petroleum Chemistry, 2019, 59, 34-47.	0.4	3
143	The mesoporous silicate-alumina composites application as supports for bifunctional sulfide catalysts for n-hexadecane hydroconversion. Journal of Porous Materials, 2021, 28, 1449-1458.	1.3	3
144	Nanoscale Functional Additives Application in the Low Temperature Greases. Polymers, 2021, 13, 3749.	2.0	3

#	Article	IF	CITATIONS
145	Promoting effect of mercury trifluoroacetate on transnitrilation reactions. Reaction Kinetics and Catalysis Letters, 1989, 40, 327-329.	0.6	2
146	Composite Depressant Additive for Diesel Fuels. Chemistry and Technology of Fuels and Oils, 2001, 37, 177-178.	0.2	2
147	Prospects for improving the environmental and performance properties of motor fuels. Chemistry and Technology of Fuels and Oils, 2008, 44, 364-369.	0.2	2
148	Flicker-Noise Gas Sensor. Bio-Medical Engineering, 2009, 43, 109-113.	0.3	2
149	New methods of manufacturing alternative fuels from renewable feedstock sources. Chemistry and Technology of Fuels and Oils, 2010, 46, 75-78.	0.2	2
150	Effect of Catalyst Type on Composition of Coconut Oil Hydrocatalytic Treatment Products. Chemistry and Technology of Fuels and Oils, 2014, 50, 95-98.	0.2	2
151	Hydrocarbons and fatty acid methyl esters in bacterial biomass before and after physicochemical treatment. Microbiology, 2014, 83, 23-29.	0.5	2
152	Effect of Electromagnetic Radiation on the Thermal Cracking of Activated Oil Sludge. Chemistry and Technology of Fuels and Oils, 2016, 52, 52-62.	0.2	2
153	The effect of methylfurans on the physicochemical and performance characteristics of finished motor gasoline. Petroleum Chemistry, 2017, 57, 914-922.	0.4	2
154	Study of the Oxidation Products of Light Oil Aromatic Compounds Using Ultrahigh Resolution Mass Spectrometry. Chemistry and Technology of Fuels and Oils, 2018, 53, 891-896.	0.2	2
155	Study of oil sludge, waste oil and other auxiliary substances influence on the methane hydrate dissociation. IOP Conference Series: Earth and Environmental Science, 0, 193, 012064.	0.2	2
156	Activated Low-Temperature Viscosity Breaking of Heavy Oil with Additives of Iron Particles and Asphaltene and Paraffin Deposits. Theoretical Foundations of Chemical Engineering, 2018, 52, 681-685.	0.2	2
157	Natural Polymer Additives for Strengthening Packaging Materials. Chemistry and Technology of Fuels and Oils, 2019, 55, 561-567.	0.2	2
158	Influence of the Procedure for Preparing Ruthenium Nanoparticles on the Internal Surface of Aluminosilicate Nanotubes on Their Catalytic Properties in Benzene Hydrogenation in the Presence of Water. Petroleum Chemistry, 2021, 61, 676.	0.4	2
159	Micro-Mesoporous Catalyst Based on Natural Aluminosilicate Nanotubes and ZSM-5 Zeolite for Methanol Conversion to Hydrocarbons. Petroleum Chemistry, 2021, 61, 773-780.	0.4	2
160	Hydroconversion of n-Hexadecane on Zeolite-Containing Sulfide-Based Catalysts: Influence of Nitrogen Impurity in the Feedstock on the Hydroisomerization Selectivity. Petroleum Chemistry, 2021, 61, 739-747.	0.4	2
161	Ruthenium-Containing Catalysts Based on Halloysite Aluminosilicate Nanotubes of Different Origin in Benzene Hydrogenation. Petroleum Chemistry, 2021, 61, 1104-1110.	0.4	2
162	Dataset for the interfacial tension and phase properties of the ternary system water–Â2-butoxyethanol–Âtoluene. Data in Brief, 2021, 39, 107532.	0.5	2

#	Article	IF	CITATIONS
163	Ag-Modified microfibrillar cellulose as support in composite phase change materials with enhanced thermal transfer properties. Materials Letters, 2022, 308, 131173.	1.3	2
164	The reaction of thiocaprylic acid with methyl thiocyanate. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1989, 38, 1984-1984.	0.0	1
165	Debromination Reaction of 2-Bromocarboxylic Acids. Mendeleev Communications, 1994, 4, 20-22.	0.6	1
166	DAKS-D depressant additive for diesel fuels. Chemistry and Technology of Fuels and Oils, 1999, 35, 300-301.	0.2	1
167	Modeling of Combustion Processes in Internal Combustion Engines. Chemistry and Technology of Fuels and Oils, 2000, 36, 408-415.	0.2	1
168	Mechanism of Combustion of Fuelâ€Air Mixtures. Chemistry and Technology of Fuels and Oils, 2001, 37, 329-334.	0.2	1
169	Core-shell composite metal catalysts incased into natural ceramic nanotubes. IOP Conference Series: Materials Science and Engineering, 2014, 64, 012017.	0.3	1
170	Size-selective contrasting of cracks on a metal surface by gold nanoparticles. Mendeleev Communications, 2015, 25, 356-357.	0.6	1
171	Reduction of the total sulfur content of the liquid products obtained by the extraction of oil shale (short communication). Solid Fuel Chemistry, 2015, 49, 324-325.	0.2	1
172	Fatty Acid Composition of Basidiomycetes Lipids - a Promising Feedstock for Obtaining Biodiesel. Chemistry and Technology of Fuels and Oils, 2016, 52, 255-260.	0.2	1
173	Two-stage oxidative desulfurization of material containing oil sludge. Theoretical Foundations of Chemical Engineering, 2017, 51, 830-834.	0.2	1
174	Thermodynamic Calculations to Determine the Optimal Composition of Oxide Catalysts. ChemPhysChem, 2018, 19, 1522-1530.	1.0	1
175	Use of Transformer Oil and "Dry Water―to Store and Transport Methane Hydrate. Chemistry and Technology of Fuels and Oils, 2019, 55, 280-286.	0.2	1
176	Detection of bacterial colonization by the spectral changes of surface-enhanced Raman reporters. Biochemical and Biophysical Research Communications, 2021, 546, 145-149.	1.0	1
177	Potential use of basidiomycota Trametes hirsuta MT-17.24 in biodegradation of polyanionic cellulose. Izvestiâ Vuzov: Prikladnaâ Himiâ I Biotehnologiâ, 2021, 11, 472-480.	0.1	1
178	Inhibition-replacement methane recovery from gas hydrates: an experimental study Earth's Cryosphere, 2018, , .	0.5	1
179	USING OF ESTERS AS DISPERSION MEDIUM OF POLYUREA PLASTIC GREASES. ChemChemTech, 2019, 62, 73-78.	0.1	1
180	Alkylation of aromatic compounds. Chemistry and Technology of Fuels and Oils, 1980, 16, 446-449.	0.2	0

#	Article	IF	CITATIONS
181	Synthesis and properties of sym-triazine derivatives. 6. Synthesis of 2-amino- and 2,4-diamino-sym-triazines containing sterically hindered phenol segments. Chemistry of Heterocyclic Compounds, 1987, 23, 1118-1123.	0.6	0
182	High-temperature transnitrilation of 2-bromocaproic acid. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1990, 39, 1528-1530.	0.0	0
183	Reaction of para-substituted aromatic acids with methyl thiocyanate in trifluoroacetic acid. Bulletin of the Russian Academy of Sciences Division of Chemical Science, 1992, 41, 324-328.	0.0	0
184	Quantum Chemistry of Chemisorption of Ethylene at the Active Site of Alumophenylsiloxane. Mendeleev Communications, 1994, 4, 144-146.	0.6	0
185	Semiempirical andab initio study of the structure of the alumophenylsiloxane complex and its fragments. Journal of Structural Chemistry, 1995, 36, 373-379.	0.3	0
186	Modeling of structure and properties of active centers of catalysts on the base of metalorganosiloxanes. Studies in Surface Science and Catalysis, 2000, 130, 1175-1179.	1.5	0
187	Production of DAKS-D Depressant. Chemistry and Technology of Fuels and Oils, 2001, 37, 22-23.	0.2	0
188	The Mechanism of Action of Antiknock Compounds in Gasolines. Chemistry and Technology of Fuels and Oils, 2001, 37, 101-102.	0.2	0
189	Effect of Pour Depressants on the Optical and Low-Temperature Properties of Diesel Fuels. Chemistry and Technology of Fuels and Oils, 2003, 39, 64-66.	0.2	0
190	Alkylation of Benzene with Propylene on Alumina Phenyl Siloxane. Chemistry and Technology of Fuels and Oils, 2004, 40, 181-183.	0.2	0
191	Composite additive for GShZ gas condensate diesel fuel. Chemistry and Technology of Fuels and Oils, 2005, 41, 52-54.	0.2	0
192	A Composite Additive for "Heavy―Gas-Condensate Diesel Fuel. Chemistry and Technology of Fuels and Oils, 2005, 41, 281-286.	0.2	0
193	Calculation of complex mechanical systems at finite compressive deformations. Doklady Physics, 2008, 53, 605-609.	0.2	0
194	Additive-effect mechanism in disperse fuel systems. Chemistry and Technology of Fuels and Oils, 2009, 45, 317-322.	0.2	0
195	Optimal coding of continuous functions. Doklady Mathematics, 2009, 79, 421-423.	0.1	0
196	Quantum-chemical study of the complexation of maleimide with benzene and water molecules. Russian Journal of Physical Chemistry B, 2011, 5, 571-581.	0.2	0
197	Fabrication of nanostructured materials in ultrahigh-frequency discharge plasma. Chemistry and Technology of Fuels and Oils, 2011, 46, 424-429.	0.2	0
198	Interrelation of rectification sharpness and the benzene distribution in gasoline fractions. Chemistry and Technology of Fuels and Oils, 2011, 47, 201-208.	0.2	0

#	Article	IF	CITATIONS
199	Nonspherical Gold Nanoparticles as Bright Light Scattering Labels with Narrow Plasmon Lines. Advances in Science and Technology, 2012, 86, 51-58.	0.2	0
200	Waste-Free SHS Technology of Hydrofining Catalyst Production. Chemistry and Technology of Fuels and Oils, 2014, 50, 1-4.	0.2	0
201	Diffusive permeability of hybrid cation-exchange membranes MF-4SC/halloysite nanotubes. , 2015, , .		0
202	Catalytic cracking of vacuum gas oil with wave-induced feedstock preactivation. Theoretical Foundations of Chemical Engineering, 2015, 49, 756-762.	0.2	0
203	Cracking of vacuum gas oil over poisoned and passivated catalysts with wave-induced feedstock preactivation. Theoretical Foundations of Chemical Engineering, 2015, 49, 763-768.	0.2	0
204	Dependence of Oil Extraction Factor on Thermodynamic Parameters of Solvent. Chemistry and Technology of Fuels and Oils, 2016, 52, 409-413.	0.2	0
205	Using copper nanomarkers for revealing microcracks and regions of microdamage on the surface of pipelines and parts of oil and gas machinery. Protection of Metals and Physical Chemistry of Surfaces, 2016, 52, 1128-1133.	0.3	0
206	Structure Simulation and Calculation of the Energy of Interaction of the Fragments of Cellulose Macromolecules. Solid Fuel Chemistry, 2019, 53, 190-196.	0.2	0
207	Production of Radiation Cross-Linked Cellulose-Based Polymeric Materials*. Chemistry and Technology of Fuels and Oils, 2019, 54, 733-737.	0.2	0
208	Condensing separator - a new device and gas preparation system. Neftyanoe Khozyaystvo - Oil Industry, 2019, 12, 77-81.	0.1	0
209	New mechanistic insights into direct ethylene glycol synthesis from syngas over modified Rh carbonyl catalysts. Fuel, 2022, 324, 124500.	3.4	Ο