John Inge Svendsen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2667793/publications.pdf

Version: 2024-02-01

59 papers

4,715 citations

30 h-index 53 g-index

60 all docs 60 does citations

60 times ranked

3773 citing authors

#	Article	IF	CITATIONS
1	Late Quaternary ice sheet history of northern Eurasia. Quaternary Science Reviews, 2004, 23, 1229-1271.	1.4	1,279
2	The last Eurasian ice sheets – a chronological database and timeâ€slice reconstruction, DATEDâ€1. Boreas, 2016, 45, 1-45.	1.2	734
3	Holocene glacial and climatic variations on Spitsbergen, Svalbard. Holocene, 1997, 7, 45-57.	0.9	249
4	FLUCTUATIONS OF THE SVALBARD–BARENTS SEA ICE SHEET DURING THE LAST 150â€^000 YEARS. Quaternary Science Reviews, 1998, 17, 11-42.	1.4	216
5	The Last Glacial Maximum on Spitsbergen, Svalbard. Quaternary Research, 1992, 38, 1-31.	1.0	157
6	Age and extent of the Barents and Kara ice sheets in Northern Russia. Boreas, 1999, 28, 46-80.	1.2	155
7	Late Weichselian and holocene sea-level history for a cross-section of western Norway. Journal of Quaternary Science, 1987, 2, 113-132.	1.1	148
8	Human presence in the European Arctic nearly 40,000 years ago. Nature, 2001, 413, 64-67.	13.7	140
9	Marginal formations of the last Kara and Barents ice sheets in northern European Russia. Boreas, 1999, 28, 23-45.	1.2	103
10	The chronology of a large ice-dammed lake and the Barents–Kara Ice Sheet advances, Northern Russia. Global and Planetary Change, 2001, 31, 321-336.	1.6	100
11	Late glacial and holocene ¹⁰ Be production rates for western Norway. Journal of Quaternary Science, 2012, 27, 89-96.	1.1	99
12	Late Quaternary dynamics of Arctic biota from ancient environmental genomics. Nature, 2021, 600, 86-92.	13.7	81
13	The Holocene Thermal Maximum around Svalbard, Arctic North Atlantic; molluscs show early and exceptional warmth. Holocene, 2018, 28, 65-83.	0.9	7 5
14	Late Mousterian Persistence near the Arctic Circle. Science, 2011, 332, 841-845.	6.0	71
15	Sea-level fluctuations imply that the Younger Dryas ice-sheet expansion in western Norway commenced during the AllerÃ,d. Quaternary Science Reviews, 2007, 26, 2128-2151.	1.4	70
16	Paleoclimatic inferences from glacial fluctuations on Svalbard during the last 20 000 years. Climate Dynamics, 1992, 6, 213-220.	1.7	67
17	Deglaciation chronology inferred from marine sediments in a proglacial lake basin, western Spitsbergen, Svalbard. Boreas, 1990, 19, 249-272.	1.2	62
18	Collapse of marine-based outlet glaciers from the Scandinavian Ice Sheet. Quaternary Science Reviews, 2013, 67, 8-16.	1.4	52

#	Article	IF	CITATIONS
19	Geo-archaeological investigations of Palaeolithic sites along the Ural Mountains – On the northern presence of humans during the last Ice Age. Quaternary Science Reviews, 2010, 29, 3138-3156.	1.4	50
20	Late Weichselian (Valdaian) and Holocene vegetation and environmental history of the northern Timan Ridge, European Arctic Russia. Quaternary Science Reviews, 2003, 22, 2285-2302.	1.4	49
21	The deep accumulation of ¹⁰ Be at Utsira, southwestern Norway: Implications for cosmogenic nuclide exposure dating in peripheral ice sheet landscapes. Geophysical Research Letters, 2016, 43, 9121-9129.	1.5	45
22	A major re-growth of the Scandinavian Ice Sheet in western Norway during AllerÃ,d-Younger Dryas. Quaternary Science Reviews, 2016, 132, 175-205.	1.4	45
23	Early break-up of the Norwegian Channel Ice Stream during the Last Glacial Maximum. Quaternary Science Reviews, 2015, 107, 231-242.	1.4	44
24	Glacial and vegetation history of the Polar Ural Mountains in northern Russia during the Last Ice Age, Marine Isotope Stages 5–2. Quaternary Science Reviews, 2014, 92, 409-428.	1.4	43
25	Persistence of arctic-alpine flora during 24,000 years of environmental change in the Polar Urals. Scientific Reports, 2019, 9, 19613.	1.6	41
26	Intriguing climatic shifts in a 90 kyr old lake record from northern Russia. Boreas, 2008, 37, 20-37.	1.2	39
27	Lake stratigraphy implies an 80 000 yr delayed melting of buried dead ice in northern Russia. Journal of Quaternary Science, 2003, 18, 663-679.	1.1	38
28	A 24,000-year ancient DNA and pollen record from the Polar Urals reveals temporal dynamics of arctic and boreal plant communities. Quaternary Science Reviews, 2020, 247, 106564.	1.4	38
29	A ¹⁰ Be chronology of south-western Scandinavian Ice Sheet history during the Lateglacial period. Journal of Quaternary Science, 2014, 29, 370-380.	1.1	37
30	lce-free conditions in Novaya Zemlya 35 000-30 000 cal years B.P., as indicated by radiocarbon ages and amino acid racemization evidence from marine molluscs. Polar Research, 2008, 27, 187-208.	1.6	35
31	Glacial and environmental changes over the last 60Â000Âyears in the Polar Ural Mountains, Arctic Russia, inferred from a highâ€resolution lake record and other observations from adjacent areas. Boreas, 2019, 48, 407-431.	1.2	33
32	The first Holocene relative seaâ€level curve from the middle part of Hardangerfjorden, western Norway. Boreas, 2010, 39, 87-104.	1.2	31
33	Timing of the younger dryas glacial maximum in western Norway. Journal of Quaternary Science, 2012, 27, 81-88.	1.1	26
34	Tracing the last remnants of the Scandinavian Ice Sheet: Ice-dammed lakes and a catastrophic outburst flood in northern Sweden. Quaternary Science Reviews, 2019, 221, 105862.	1.4	23
35	Ice-flow patterns and precise timing of ice sheet retreat across a dissected fjord landscape in western Norway. Quaternary Science Reviews, 2019, 214, 139-163.	1.4	23
36	Extending the known distribution of the Vedde Ash into Siberia: occurrence in lake sediments from the Timan Ridge and the Ural Mountains, northern Russia. Boreas, 2019, 48, 444-451.	1.2	22

#	Article	IF	CITATIONS
37	Signature of the last shelf-centered glaciation at a key section in the Pechora basin, Arctic Russia. Journal of Quaternary Science, 1998, 13, 189-203.	1.1	20
38	The Bøllingâ€age BlomvÃ¥g Beds, western Norway: implications for the Older Dryas glacial reâ€advance and the age of the deglaciation. Boreas, 2017, 46, 162-184.	1.2	20
39	The Lastglacial and Holocene seismostratigraphy and sediment distribution of Lake Bolshoye Shchuchye, Polar Ural Mountains, Arctic Russia. Boreas, 2019, 48, 452-469.	1.2	20
40	Glacial and climate history of the last 24Â000Âyears in the Polar Ural Mountains, Arctic Russia, inferred from partly varved lake sediments. Boreas, 2019, 48, 432-443.	1.2	20
41	Clitellate worms (Annelida) in lateglacial and Holocene sedimentary <scp>DNA</scp> records from the Polar Urals and northern Norway. Boreas, 2019, 48, 317-329.	1.2	18
42	Deglaciation of Boknafjorden, southâ€western Norway. Journal of Quaternary Science, 2017, 32, 80-90.	1.1	14
43	A new palaeoenvironmental model for the evolution of the <scp>B</scp> yzovaya <scp>P</scp> alaeolithic site, northern <scp>R</scp> ussia. Boreas, 2012, 41, 527-545.	1.2	11
44	Lateglacial vegetation and palaeoenvironment in W Norway, with new pollen data from the Sunnm $\tilde{A}_{,r}$ e region. Boreas, 2011, 40, 616-635.	1.2	10
45	Response to "Comment on Late Mousterian Persistence near the Arctic Circle― Science, 2012, 335, 167-167.	6.0	9
46	Northern Eurasian lakes – late Quaternary glaciation and climate history – introduction. Boreas, 2019, 48, 269-272.	1.2	9
47	Animals and humans in the European Russian Arctic towards the end of the last Ice Age and during the midâ€Holocene time. Boreas, 2019, 48, 387-406.	1.2	8
48	River sections at the Byzovaya Palaeolithic site – keyholes into the late Quaternary of northern European Russia. Boreas, 2010, 39, 116-130.	1.2	7
49	Northward Shifts in the Polar Front Preceded Bølling and Holocene Warming in Southwestern Scandinavia. Geophysical Research Letters, 2020, 47, e2020GL088153.	1.5	6
50	Climate, glacial and vegetation history of the polar Ural Mountains since c . 27 cal ka bp , inferred from a 54 m long sediment core from Lake Bolshoye Shchuchye. Journal of Quaternary Science, 0, , .	1.1	5
51	Rapid retreat of a Scandinavian marine outlet glacier in response to warming at the last glacial termination. Quaternary Science Reviews, 2020, 250, 106645.	1.4	4
52	How well can near infrared reflectance spectroscopy (NIRS) measure sediment organic matter in multiple lakes?. Journal of Paleolimnology, 2020, 64, 59-69.	0.8	4
53	Highâ€resolution chronology of 24 000â€year long cores from two lakes in the Polar Urals, Russia, correlated with palaeomagnetic inclination records with a distinct event about 20 000 years ago. Journal of Quaternary Science, 0, , .	1.1	3
54	Western Siberia experienced rapid shifts in moisture source and summer water balance during the last deglaciation and early Holocene. Journal of Quaternary Science, 0, , .	1.1	3

#	Article	IF	CITATIONS
55	Deglaciation of the Scandinavian Ice Sheet and a Younger Dryas ice cap in the outer Hardangerfjorden area, southwestern Norway. Boreas, 2022, 51, 255-273.	1.2	2
56	Quaternary environmental and climatic history of the northern high latitudes – recent contributions and perspectives from lake sediment records. Journal of Quaternary Science, 2022, 37, 721-728.	1.1	2
57	The Ural Mountains: glacial landforms prior to the Last Glacial Maximum. , 2022, , 257-264.		O
58	The Ural Mountains: glacial landforms from the Last Glacial Maximum. , 2022, , 419-425.		0
59	Glacial landscapes of the Ural Mountains. , 2022, , 89-94.		O