
Zhenhao Ling

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2667056/publications.pdf Version: 2024-02-01

7HENHAO LINC

#	Article	IF	CITATIONS
1	Roles of semivolatile and intermediate-volatility organic compounds in secondary organic aerosol formation and its implication: A review. Journal of Environmental Sciences, 2022, 114, 259-285.	6.1	12
2	Carbonyl compounds in the atmosphere: A review of abundance, source and their contributions to O3 and SOA formation. Atmospheric Research, 2022, 274, 106184.	4.1	19
3	Photochemistry of ozone pollution in autumn in Pearl River Estuary, South China. Science of the Total Environment, 2021, 754, 141812.	8.0	22
4	A gridded emission inventory of semi-volatile and intermediate volatility organic compounds in China. Science of the Total Environment, 2021, 761, 143295.	8.0	27
5	Long-term variations of C1–C5 alkyl nitrates and their sources in Hong Kong. Environmental Pollution, 2021, 270, 116285.	7.5	1
6	Tropospheric Ozone Variability Over Hong Kong Based on Recent 20Âyears (2000–2019) Ozonesonde Observation. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033054.	3.3	25
7	Roles of Semivolatile/Intermediateâ€Volatility Organic Compounds on SOA Formation Over China During a Pollution Episode: Sensitivity Analysis and Implications for Future Studies. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033999.	3.3	12
8	Assessment of atmospheric photochemical reactivity in the Yangtze River Delta using a photochemical box model. Atmospheric Research, 2020, 245, 105088.	4.1	9
9	Formation and sink of glyoxal and methylglyoxal in a polluted subtropical environment: observation-based photochemical analysis and impact evaluation. Atmospheric Chemistry and Physics, 2020, 20, 11451-11467.	4.9	29
10	Emission inventory of semi-volatile and intermediate-volatility organic compounds and their effects on secondary organic aerosol over the Pearl River Delta region. Atmospheric Chemistry and Physics, 2019, 19, 8141-8161.	4.9	50
11	Contributions of different anthropogenic volatile organic compound sources to ozone formation at a receptor site in the Pearl River Delta region and its policy implications. Atmospheric Chemistry and Physics, 2019, 19, 8801-8816.	4.9	137
12	Sources of methacrolein and methyl vinyl ketone and their contributions to methylglyoxal and formaldehyde at a receptor site in Pearl River Delta. Journal of Environmental Sciences, 2019, 79, 1-10.	6.1	16
13	Overview on the spatial–temporal characteristics of the ozone formation regime in China. Environmental Sciences: Processes and Impacts, 2019, 21, 916-929.	3.5	91
14	Photochemical evolution of continental air masses and their influence on ozone formation over the South China Sea. Science of the Total Environment, 2019, 673, 424-434.	8.0	16
15	Photochemical Formation of C ₁ –C ₅ Alkyl Nitrates in Suburban Hong Kong and over the South China Sea. Environmental Science & Technology, 2018, 52, 5581-5589.	10.0	13
16	Seasonal variations of C1-C4 alkyl nitrates at a coastal site in Hong Kong: Influence of photochemical formation and oceanic emissions. Chemosphere, 2018, 194, 275-284.	8.2	11
17	Modeling the impact of chlorine emissions from coal combustion and prescribed waste incineration on tropospheric ozone formation in China. Atmospheric Chemistry and Physics, 2018, 18, 2709-2724.	4.9	56
18	Ozone pollution around a coastal region of South China Sea: interaction between marine and continental air. Atmospheric Chemistry and Physics, 2018, 18, 4277-4295.	4.9	74

Zhenhao Ling

#	Article	IF	CITATIONS
19	Factors dominating 3-dimensional ozone distribution during high tropospheric ozone period. Environmental Pollution, 2018, 232, 55-64.	7.5	25
20	Surface O3 photochemistry over the South China Sea: Application of a near-explicit chemical mechanism box model. Environmental Pollution, 2018, 234, 155-166.	7.5	77
21	PAN–Precursor Relationship and Process Analysis of PAN Variations in the Pearl River Delta Region. Atmosphere, 2018, 9, 372.	2.3	13
22	Source Contributions to PM2.5 under Unfavorable Weather Conditions in Guangzhou City, China. Advances in Atmospheric Sciences, 2018, 35, 1145-1159.	4.3	20
23	Tropospheric volatile organic compounds in China. Science of the Total Environment, 2017, 574, 1021-1043.	8.0	169
24	Long-term O ₃ –precursor relationships in Hong Kong: field observation and model simulation. Atmospheric Chemistry and Physics, 2017, 17, 10919-10935.	4.9	98
25	Chemical Composition of PM2.5 and its Impact on Visibility in Guangzhou, Southern China. Aerosol and Air Quality Research, 2016, 16, 2349-2361.	2.1	21
26	Formaldehyde and Acetaldehyde at Different Elevations in Mountainous Areas in Hong Kong. Aerosol and Air Quality Research, 2016, 16, 1868-1878.	2.1	30
27	The toxic effects of indoor atmospheric fine particulate matter collected from allergic and nonâ€allergic families in Wuhan on mouse peritoneal macrophages. Journal of Applied Toxicology, 2016, 36, 596-608.	2.8	8
28	Effectiveness of replacing catalytic converters in LPG-fueled vehicles in Hong Kong. Atmospheric Chemistry and Physics, 2016, 16, 6609-6626.	4.9	46
29	New insight into the spatiotemporal variability and source apportionments of C ₁ –C ₄ alkyl nitrates in Hong Kong. Atmospheric Chemistry and Physics, 2016, 16, 8141-8156.	4.9	20
30	Concentrations and sources of non-methane hydrocarbons (NMHCs) from 2005 to 2013 in Hong Kong: A multi-year real-time data analysis. Atmospheric Environment, 2015, 103, 196-206.	4.1	84
31	A preliminary investigation on the occurrence and distribution of antibiotic resistance genes in the Beijiang River, South China. Journal of Environmental Sciences, 2013, 25, 1656-1661.	6.1	48
32	Characterizing the Gas-phase Organochlorine Pesticides in the Atmosphere over the Pearl River Delta Region. Aerosol and Air Quality Research, 2011, 11, 237-246.	2.1	9
33	A Preliminary Investigation on the Occurrence and Distribution of Antibiotics in the Yellow River and its Tributaries, China. Water Environment Research, 2009, 81, 248-254.	2.7	100