
Nilima Prakash

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2666878/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Generation of a NES-mScarlet Red Fluorescent Reporter Human iPSC Line for Live Cell Imaging and Flow Cytometric Analysis and Sorting Using CRISPR-Cas9-Mediated Gene Editing. Cells, 2022, 11, 268.	4.1	2
2	Parkinson's disease motor symptoms rescue by CRISPRaâ€reprogramming astrocytes into GABAergic neurons. EMBO Molecular Medicine, 2022, 14, e14797.	6.9	26
3	Dose-Dependent and Subset-Specific Regulation of Midbrain Dopaminergic Neuron Differentiation by LEF1-Mediated WNT1/b-Catenin Signaling. Frontiers in Cell and Developmental Biology, 2020, 8, 587778.	3.7	16
4	βâ€catenin signaling modulates the tempo of dendritic growth of adultâ€born hippocampal neurons. EMBO Journal, 2020, 39, e104472.	7.8	21
5	Crosstalk of Intercellular Signaling Pathways in the Generation of Midbrain Dopaminergic Neurons In Vivo and from Stem Cells. Journal of Developmental Biology, 2019, 7, 3.	1.7	26
6	BMP/SMAD Pathway Promotes Neurogenesis of Midbrain Dopaminergic Neurons <i>In Vivo</i> and in Human Induced Pluripotent and Neural Stem Cells. Journal of Neuroscience, 2018, 38, 1662-1676.	3.6	66
7	Differences in the spatiotemporal expression and epistatic gene regulation of the mesodiencephalic dopaminergic precursor marker PITX3 during chicken and mouse development. Development (Cambridge), 2016, 143, 691-702.	2.5	5
8	Fgf15 regulates thalamic development by controlling the expression of proneural genes. Brain Structure and Function, 2016, 221, 3095-3109.	2.3	14
9	A WNT1-regulated developmental gene cascade prevents dopaminergic neurodegeneration in adult En1 mice. Neurobiology of Disease, 2015, 82, 32-45.	4.4	38
10	Limitations of <i>In Vivo</i> Reprogramming to Dopaminergic Neurons via a Tricistronic Strategy. Human Gene Therapy Methods, 2015, 26, 107-122.	2.1	2
11	Dickkopf 3 Promotes the Differentiation of a Rostrolateral Midbrain Dopaminergic Neuronal Subset <i>In Vivo</i> and from Pluripotent Stem Cells <i>In Vitro</i> in the Mouse. Journal of Neuroscience, 2015, 35, 13385-13401.	3.6	30
12	The conserved miR-8/miR-200 microRNA family and their role in invertebrate and vertebrate neurogenesis. Cell and Tissue Research, 2015, 359, 161-177.	2.9	52
13	FGF/FGFR2 Signaling Regulates the Generation and Correct Positioning of Bergmann Glia Cells in the Developing Mouse Cerebellum. PLoS ONE, 2014, 9, e101124.	2.5	18
14	Simple Derivation of Transgene-Free iPS Cells by a Dual Recombinase Approach. Molecular Biotechnology, 2014, 56, 697-713.	2.4	2
15	Otx2 cell-autonomously determines dorsal mesencephalon versus cerebellum fate independently of isthmic organizing activity. Development (Cambridge), 2014, 141, 377-388.	2.5	25
16	Wnt1-regulated genetic networks in midbrain dopaminergic neuron development. Journal of Molecular Cell Biology, 2014, 6, 34-41.	3.3	60
17	Mouse IDGenes: a reference database for genetic interactions in the developing mouse brain. Database: the Journal of Biological Databases and Curation, 2014, 2014, bau083-bau083.	3.0	2
18	Sharpening of expression domains induced by transcription and microRNA regulationwithin a spatio-temporal model of mid-hindbrain boundary formation. BMC Systems Biology, 2013, 7, 48.	3.0	16

NILIMA PRAKASH

#	Article	IF	CITATIONS
19	Otx2 selectively controls the neurogenesis of specific neuronal subtypes of the ventral tegmental area and compensates En1-dependent neuronal loss and MPTP vulnerability. Developmental Biology, 2013, 373, 176-183.	2.0	44
20	A Unilateral Negative Feedback Loop Between <i>miR-200</i> microRNAs and Sox2/E2F3 Controls Neural Progenitor Cell-Cycle Exit and Differentiation. Journal of Neuroscience, 2012, 32, 13292-13308.	3.6	98
21	Fgf15-mediated control of neurogenic and proneural gene expression regulates dorsal midbrain neurogenesis. Developmental Biology, 2011, 350, 496-510.	2.0	32
22	Pitx3 Is a Critical Mediator of GDNF-Induced BDNF Expression in Nigrostriatal Dopaminergic Neurons. Journal of Neuroscience, 2011, 31, 12802-12815.	3.6	87
23	Delayed dopaminergic neuron differentiation in <i>Lrp6</i> mutant mice. Developmental Dynamics, 2010, 239, 211-221.	1.8	35
24	<i>Fzd3</i> and <i>Fzd6</i> deficiency results in a severe midbrain morphogenesis defect. Developmental Dynamics, 2010, 239, 246-260.	1.8	45
25	Ectopic Dopaminergic Progenitor Cells from <i>En1</i> ^{<i>+/Otx2lacZ</i>} Transgenic Mice Survive and Functionally Reinnervate the Striatum Following Transplantation in a Rat Model of Parkinson's Disease. Cell Transplantation, 2010, 19, 1085-1101.	2.5	6
26	Otx2 controls neuron subtype identity in ventral tegmental area and antagonizes vulnerability to MPTP. Nature Neuroscience, 2010, 13, 1481-1488.	14.8	114
27	Nkx6-1 controls the identity and fate of red nucleus and oculomotor neurons in the mouse midbrain. Development (Cambridge), 2009, 136, 2545-2555.	2.5	67
28	Spatial Analysis of Expression Patterns Predicts Genetic Interactions at the Mid-Hindbrain Boundary. PLoS Computational Biology, 2009, 5, e1000569.	3.2	36
29	[ST3]: Genetic pathways controlling midbrain dopaminergic neuron development in vivo. International Journal of Developmental Neuroscience, 2008, 26, 833-833.	1.6	0
30	Anterior-posterior graded response to Otx2 controls proliferation and differentiation of dopaminergic progenitors in the ventral mesencephalon. Development (Cambridge), 2008, 135, 3459-3470.	2.5	96
31	Genetic Control of Rodent Midbrain Dopaminergic Neuron Development in the Light of Human Disease. Pharmacopsychiatry, 2008, 41, S44-S50.	3.3	4
32	Wnt5a Regulates Ventral Midbrain Morphogenesis and the Development of A9–A10 Dopaminergic Cells In Vivo. PLoS ONE, 2008, 3, e3517.	2.5	84
33	A Wnt Signal Regulates Stem Cell Fate and Differentiation in vivo. Neurodegenerative Diseases, 2007, 4, 333-338.	1.4	47
34	Fgfr2 and Fgfr3 are not required for patterning and maintenance of the midbrain and anterior hindbrain. Developmental Biology, 2007, 303, 231-243.	2.0	27
35	Distinct but redundant expression of the Frizzled Wnt receptor genes at signaling centers of the developing mouse brain. Neuroscience, 2007, 147, 693-711.	2.3	57
36	Genetic networks controlling the development of midbrain dopaminergic neurons. Journal of Physiology, 2006, 575, 403-410.	2.9	120

Nilima Prakash

#	Article	IF	CITATIONS
37	Development of dopaminergic neurons in the mammalian brain. Cellular and Molecular Life Sciences, 2006, 63, 187-206.	5.4	167
38	A Wnt1-regulated genetic network controls the identity and fate of midbrain-dopaminergic progenitors in vivo. Development (Cambridge), 2006, 133, 89-98.	2.5	219
39	Expression of Fgf receptors 1, 2, and 3 in the developing mid- and hindbrain of the mouse. Developmental Dynamics, 2005, 233, 1023-1030.	1.8	38
40	Specification of midbrain territory. Cell and Tissue Research, 2004, 318, 5-14.	2.9	33
41	Mouse Notch 3 Expression in the Pre- and Postnatal Brain: Relationship to the Stroke and Dementia Syndrome CADASIL. Experimental Cell Research, 2002, 278, 31-44.	2.6	43
42	Vasopressin mRNA localization in nerve cells: Characterization of cis-acting elements and trans-acting factors. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 7072-7079.	7.1	37
43	Identification of Both General and Region-Specific Embryonic CNS Enhancer Elements in the Nestin Promoter. Experimental Cell Research, 1999, 248, 509-519.	2.6	71
44	Dendritic Localization of Rat Vasopressin mRNA: Ultrastructural Analysis and Mapping of Targeting Elements. European Journal of Neuroscience, 1997, 9, 523-532.	2.6	56
45	Development of pigment-dispersing hormone-like immunoreactivity in the brain of the locust Schistocerca gregaria : comparison with immunostaining for urotensin I and Mas-allatotropin. Cell and Tissue Research, 1996, 285, 127-139.	2.9	13