Songqiang Xiao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2666724/publications.pdf

Version: 2024-02-01

1307594 1199594 14 215 7 12 citations g-index h-index papers 14 14 14 132 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Experimental Study on Broken Area Evolution Characteristics and Crack Propagation Rules of Water Jet Impacting Concrete with Precracks. Journal of Performance of Constructed Facilities, 2021, 35, .	2.0	2
2	Permeability Enhancement and Methane Drainage Capacity of Tree-type Boreholes to Stimulate Low-permeability Coal Seams. Arabian Journal for Science and Engineering, 2021, 46, 573-586.	3.0	9
3	Gas migration mechanism and enrichment law under hydraulic fracturing in soft coal seams: a case study in Songzao coalfield. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2021, 43, 1897-1911.	2.3	8
4	Coal breakage features and fragment size distribution in water jet drilling for coalbed methane development. Journal of Engineering, 2021, 2021, 267-275.	1.1	0
5	Numerical analysis on the flow field structure and deflection characteristics of water jets under nozzle moving conditions. Engineering Applications of Computational Fluid Mechanics, 2020, 14, 1279-1301.	3.1	5
6	Tree-Type Boreholes in Coal Mines for Enhancing Permeability and Methane Drainage: Theory and an Industrial-Scale Field Trial. Natural Resources Research, 2020, 29, 3197-3213.	4.7	9
7	Experimental study on rock-breaking performance of water jets generated by self-rotatory bit and rock failure mechanism. Powder Technology, 2019, 346, 203-216.	4.2	74
8	Rock-Breaking Properties Under the Rotatory Impact of Water Jets in Water Jet Drilling. Applied Sciences (Switzerland), 2019, 9, 5417.	2.5	7
9	Calculation Model of High-Pressure Water Jet Slotting Depth for Coalbed Methane Development in Underground Coal Mine. Applied Sciences (Switzerland), 2019, 9, 5250.	2.5	5
10	Investigation on Coal Fragmentation by High-Velocity Water Jet in Drilling: Size Distributions and Fractal Characteristics. Applied Sciences (Switzerland), 2018, 8, 1988.	2.5	19
11	A New Tree-Type Fracturing Method for Stimulating Coal Seam Gas Reservoirs. Energies, 2017, 10, 1388.	3.1	22
12	Experimental Study of Crack Initiation and Extension Induced by Hydraulic Fracturing in a Tree-Type Borehole Array. Energies, 2016, 9, 514.	3.1	28
13	Rock-Breaking Properties of Multi-Nozzle Bits for Tree-Type Drilling in Underground Coal Mines. Energies, 2016, 9, 249.	3.1	19
14	Study of the rock-breaking and drilling performance of a self-rotatory water-jet bit in water-jet drilling and its influential factors. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 0, , 1-17.	2.3	8