
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2666562/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Shear strain and inflammationâ€induced fixed charge density loss in the knee joint cartilage following ACL injury and reconstruction: A computational study. Journal of Orthopaedic Research, 2022, 40, 1505-1522.	2.3	8
2	MRI Relaxometry as Early Measures of OA. , 2022, , 27-37.		0
3	Subjectâ€specific biomechanical analysis to estimate locations susceptible to osteoarthritis—Finite element modeling and MRI followâ€up of ACL reconstructed patients. Journal of Orthopaedic Research, 2022, 40, 1744-1755.	2.3	8
4	Efficient phase ycling strategy for highâ€resolution 3D gradientâ€echo quantitative parameter mapping. NMR in Biomedicine, 2022, , e4700.	2.8	2
5	Meniscal Treatment as a Predictor of Worse Articular Cartilage Damage on MRI at 2 Years After ACL Reconstruction: The MOON Nested Cohort. American Journal of Sports Medicine, 2022, 50, 951-961.	4.2	1
6	Automated knee cartilage segmentation for heterogeneous clinical MRI using generative adversarial networks with transfer learning. Quantitative Imaging in Medicine and Surgery, 2022, 12, 2620-2633.	2.0	14
7	Elevated Patellofemoral and Tibiofemoral T1ï•Relaxation Times Following a First Time Patellar Dislocation. Cartilage, 2022, 13, 194760352211025.	2.7	3
8	FDA/Arthritis Foundation osteoarthritis drug development workshop recap: Assessment of long-term benefit. Seminars in Arthritis and Rheumatism, 2022, 56, 152070.	3.4	12
9	Prediction of local fixed charge density loss in cartilage following ACL injury and reconstruction: A computational proofâ€ofâ€concept study with MRI followâ€up. Journal of Orthopaedic Research, 2021, 39, 1064-1081.	2.3	28
10	Reliability and Change in Erosion Measurements by High-resolution Peripheral Quantitative Computed Tomography in a Longitudinal Dataset of Rheumatoid Arthritis Patients. Journal of Rheumatology, 2021, 48, 348-351.	2.0	6
11	Meniscal ramp lesions: frequency, natural history, and the effect on knee cartilage over 2 years in subjects with anterior cruciate ligament tears. Skeletal Radiology, 2021, 50, 551-558.	2.0	12
12	The International Workshop on Osteoarthritis Imaging Knee MRI Segmentation Challenge: A Multi-Institute Evaluation and Analysis Framework on a Standardized Dataset. Radiology: Artificial Intelligence, 2021, 3, e200078.	5.8	46
13	The QIBA Profile for MRI-based Compositional Imaging of Knee Cartilage. Radiology, 2021, 301, 423-432.	7.3	41
14	PET/CT Imaging of Human TNFα Using [89Zr]Certolizumab Pegol in a Transgenic Preclinical Model of Rheumatoid Arthritis. Molecular Imaging and Biology, 2020, 22, 105-114.	2.6	17
15	Identification of locations susceptible to osteoarthritis in patients with anterior cruciate ligament reconstruction: Combining knee joint computational modelling with follow-up T1I•and T2 imaging. Clinical Biomechanics, 2020, 79, 104844.	1.2	17
16	Greater Bone Marrow Adiposity Predicts Bone Loss in Older Women. Journal of Bone and Mineral Research, 2020, 35, 326-332.	2.8	37
17	Quantitative imaging of anterior cruciate ligament (ACL) graft demonstrates longitudinal compositional changes and relationships with clinical outcomes at 2 years after ACL reconstruction. Journal of Orthopaedic Research, 2020, 38, 1289-1295.	2.3	27
18	Sixâ€month postâ€surgical elevations in cartilage T1rho relaxation times are associated with functional performance 2 years after ACL reconstruction. Journal of Orthopaedic Research, 2020, 38, 1132-1140.	2.3	12

#	Article	IF	CITATIONS
19	Automated cartilage and meniscus segmentation of knee MRI with conditional generative adversarial networks. Magnetic Resonance in Medicine, 2020, 84, 437-449.	3.0	72
20	Patellar Malalignment Is Associated With Patellofemoral Lesions and Cartilage Relaxation Times After Hamstring Autograft Anterior Cruciate Ligament Reconstruction. American Journal of Sports Medicine, 2020, 48, 2242-2251.	4.2	10
21	Altered tibiofemoral position following ACL reconstruction is associated with cartilage matrix changes: A voxelâ€based relaxometry analysis. Journal of Orthopaedic Research, 2020, 38, 2454-2463.	2.3	11
22	MRI Assessment of Bone Marrow Composition in Osteoporosis. Current Osteoporosis Reports, 2020, 18, 57-66.	3.6	14
23	Patients With Abnormal Limb Kinetics at 6 Months After Anterior Cruciate Ligament Reconstruction Have an Increased Risk of Persistent Medial Meniscal Abnormality at 3 Years. Orthopaedic Journal of Sports Medicine, 2020, 8, 232596711989524.	1.7	8
24	Increases in Joint Laxity After Anterior Cruciate Ligament Reconstruction Are Associated With Sagittal Biomechanical Asymmetry. Arthroscopy - Journal of Arthroscopic and Related Surgery, 2019, 35, 2072-2079.	2.7	10
25	T1ï•based fibril-reinforced poroviscoelastic constitutive relation of human articular cartilage using inverse finite element technology. Quantitative Imaging in Medicine and Surgery, 2019, 9, 359-370.	2.0	7
26	Structural Changes over a Short Period Are Associated with Functional Assessments in Rheumatoid Arthritis. Journal of Rheumatology, 2019, 46, 676-684.	2.0	12
27	Abnormal Biomechanics at 6ÂMonths Are Associated With Cartilage Degeneration at 3ÂYears After Anterior Cruciate Ligament Reconstruction. Arthroscopy - Journal of Arthroscopic and Related Surgery, 2019, 35, 511-520.	2.7	46
28	An Abnormal Tibial Position Is Associated With Alterations in the Meniscal Matrix: A 3-Year Longitudinal Study After Anterior Cruciate Ligament Reconstruction. Orthopaedic Journal of Sports Medicine, 2019, 7, 232596711882005.	1.7	4
29	Natural evolution of popliteomeniscal fascicle tears over 2 years and its association with lateral articular knee cartilage degeneration in patients with traumatic anterior cruciate ligament tear. European Radiology, 2018, 28, 3542-3549.	4.5	11
30	Synovial Fluid Profile at the Time of Anterior Cruciate Ligament Reconstruction and Its Association With Cartilage Matrix Composition 3 Years After Surgery. American Journal of Sports Medicine, 2018, 46, 890-899.	4.2	64
31	Biomechanical Factors Associated With Pain and Symptoms Following Anterior Cruciate Ligament Injury and Reconstruction. PM and R, 2018, 10, 56-63.	1.6	10
32	Reliable quantification of marrow fat content and unsaturation level using in vivo MR spectroscopy. Magnetic Resonance in Medicine, 2018, 79, 1722-1729.	3.0	10
33	Sex hormones are negatively associated with vertebral bone marrow fat. Bone, 2018, 108, 20-24.	2.9	20
34	Frontal Plane Knee Mechanics and Early Cartilage Degeneration in People With Anterior Cruciate Ligament Reconstruction: A Longitudinal Study. American Journal of Sports Medicine, 2018, 46, 378-387.	4.2	47
35	Comparison between kinetic and kinetic-kinematic driven knee joint finite element models. Scientific Reports, 2018, 8, 17351.	3.3	29
36	Chronic Kidney Disease Is Associated With Greater Bone Marrow Adiposity. Journal of Bone and Mineral Research, 2018, 33, 2158-2164.	2.8	23

#	Article	IF	CITATIONS
37	Cyclops lesions are associated with altered gait patterns and medial knee joint cartilage degeneration at 1 year after ACLâ€reconstruction. Journal of Orthopaedic Research, 2017, 35, 2275-2281.	2.3	13
38	Quantitative characterization of metacarpal and radial bone in rheumatoid arthritis using high resolution- peripheral quantitative computed tomography. International Journal of Rheumatic Diseases, 2017, 20, 353-362.	1.9	16
39	Effects of Surgical Factors on Cartilage Can Be Detected Using Quantitative Magnetic Resonance Imaging After Anterior Cruciate Ligament Reconstruction. American Journal of Sports Medicine, 2017, 45, 1075-1084.	4.2	16
40	Variations in Knee Kinematics After ACL Injury and After Reconstruction Are Correlated With Bone Shape Differences. Clinical Orthopaedics and Related Research, 2017, 475, 2427-2435.	1.5	51
41	Prestructural cartilage assessment using MRI. Journal of Magnetic Resonance Imaging, 2017, 45, 949-965.	3.4	85
42	Cyclops lesions detected by MRI are frequent findings after ACL surgical reconstruction but do not impact clinical outcome over 2Âyears. European Radiology, 2017, 27, 3499-3508.	4.5	25
43	Unsaturation level decreased in bone marrow fat of postmenopausal women with low bone density using high resolution magic angle spinning (HRMAS) 1H NMR spectroscopy. Bone, 2017, 105, 87-92.	2.9	26
44	In Vivo PET Imaging of the Activated Immune Environment in a Small Animal Model of Inflammatory Arthritis. Molecular Imaging, 2017, 16, 153601211771263.	1.4	22
45	Gait Characteristics Associated With a Greater Increase in Medial Knee Cartilage T _{1Ï} and T ₂ Relaxation Times in Patients Undergoing Anterior Cruciate Ligament Reconstruction. American Journal of Sports Medicine, 2017, 45, 3262-3271.	4.2	59
46	Bone Marrow Fat Changes After Gastric Bypass Surgery Are Associated With Loss of Bone Mass. Journal of Bone and Mineral Research, 2017, 32, 2239-2247.	2.8	59
47	Evolution of Intrameniscal Signal-Intensity Alterations Detected on MRI Over 24 Months in Patients With Traumatic Anterior Cruciate Ligament Tear. American Journal of Roentgenology, 2017, 208, 386-392.	2.2	4
48	Analysis of the articular cartilage T _{1Ï} and T ₂ relaxation times changes after ACL reconstruction in injured and contralateral knees and relationships with bone shape. Journal of Orthopaedic Research, 2017, 35, 707-717.	2.3	56
49	Evaluating radiocarpal cartilage matrix changes 3-months after anti-TNF treatment for rheumatoid arthritis using MR T1ϕimaging. Journal of Magnetic Resonance Imaging, 2017, 45, 1514-1522.	3.4	9
50	Assessment of 3-month changes in bone microstructure under anti-TNFα therapy in patients with rheumatoid arthritis using high-resolution peripheral quantitative computed tomography (HR-pQCT). Arthritis Research and Therapy, 2017, 19, 222.	3.5	27
51	Bone marrow edema-like lesions (BMELs) are associated with higher T1ï•and T2 values of cartilage in anterior cruciate ligament (ACL)-reconstructed knees: a longitudinal study. Quantitative Imaging in Medicine and Surgery, 2016, 6, 661-670.	2.0	24
52	Principal component analysis-T1ï•voxel based relaxometry of the articular cartilage: a comparison of biochemical patterns in osteoarthritis and anterior cruciate ligament subjects. Quantitative Imaging in Medicine and Surgery, 2016, 6, 623-633.	2.0	13
53	Fully automatic analysis of the knee articular cartilageT1Ïrelaxation time using voxel-based relaxometry. Journal of Magnetic Resonance Imaging, 2016, 43, 970-980.	3.4	80
54	Accelerating <i>t</i> _{1ï} cartilage imaging using compressed sensing with iterative locally adapted support detection and JSENSE. Magnetic Resonance in Medicine, 2016, 75, 1617-1629.	3.0	37

#	Article	IF	CITATIONS
55	Persistent Biomechanical Alterations After ACL Reconstruction Are Associated With Early Cartilage Matrix Changes Detected by Quantitative MR. Orthopaedic Journal of Sports Medicine, 2016, 4, 232596711664442.	1.7	31
56	Zonal differences in meniscus MR relaxation times in response to in vivo static loading in knee osteoarthritis. Journal of Orthopaedic Research, 2016, 34, 249-261.	2.3	19
57	Accelerated T1Ï•acquisition for knee cartilage quantification using compressed sensing and dataâ€driven parallel imaging: A feasibility study. Magnetic Resonance in Medicine, 2016, 75, 1256-1261.	3.0	39
58	Quantification of bone marrow water and lipid composition in anterior cruciate ligament-injured and osteoarthritic knees using three-dimensional magnetic resonance spectroscopic imaging. Magnetic Resonance Imaging, 2016, 34, 632-637.	1.8	17
59	Highâ€temporospatialâ€resolution dynamic contrastâ€enhanced (DCE) wrist MRI with variableâ€density pseudoâ€random circular Cartesian undersampling (CIRCUS) acquisition: evaluation of perfusion in rheumatoid arthritis patients. NMR in Biomedicine, 2016, 29, 15-23.	2.8	16
60	MR TIϕand T2 of meniscus after acute anterior cruciate ligament injuries. Osteoarthritis and Cartilage, 2016, 24, 631-639.	1.3	30
61	Correlation of structural abnormalities of the wrist and metacarpophalangeal joints evaluated by high-resolution peripheral quantitative computed tomography, 3ÂTesla magnetic resonance imaging and conventional radiographs in rheumatoid arthritis. International Journal of Rheumatic Diseases, 2015, 18. 628-639.	1.9	33
62	Stress and temperature-induced phase transitions and thermal expansion in (001)-cut PMN-31PT single crystal. Journal of Alloys and Compounds, 2015, 652, 287-291.	5.5	6
63	Improved differentiation between knees with cartilage lesions and controls using 7T relaxation time mapping. Journal of Orthopaedic Translation, 2015, 3, 197-204.	3.9	21
64	A comprehensive in vivo kinematic, quantitative MRI and functional evaluation following ACL reconstruction — A comparison between mini-two incision and anteromedial portal femoral tunnel drilling. Knee, 2015, 22, 547-553.	1.6	10
65	Abnormal tibial position is correlated to early degenerative changes one year following ACL reconstruction. Journal of Orthopaedic Research, 2015, 33, 1079-1086.	2.3	41
66	T1ï•magnetic resonance: basic physics principles and applications in knee and intervertebral disc imaging. Quantitative Imaging in Medicine and Surgery, 2015, 5, 858-85.	2.0	62
67	Bone Structure and Perfusion Quantification of Bone Marrow Edema Pattern in the Wrist of Patients with Rheumatoid Arthritis: A Multimodality Study. Journal of Rheumatology, 2014, 41, 1766-1773.	2.0	14
68	Cartilage Repair Surgery: Outcome Evaluation by Using Noninvasive Cartilage Biomarkers Based on Quantitative MRI Techniques?. BioMed Research International, 2014, 2014, 1-17.	1.9	46
69	Simultaneous acquisition of T _{1ï} and T ₂ quantification in knee cartilage: Repeatability and diurnal variation. Journal of Magnetic Resonance Imaging, 2014, 39, 1287-1293.	3.4	105
70	Physical Activity and Spatial Differences in Medial Knee T1rho and T2 Relaxation Times in Knee Osteoarthritis. Journal of Orthopaedic and Sports Physical Therapy, 2014, 44, 964-972.	3.5	23
71	MR TIϕquantification of cartilage focal lesions in acutely injured knees: correlation with arthroscopic evaluation. Magnetic Resonance Imaging, 2014, 32, 1290-1296.	1.8	28
72	Frontal plane knee mechanics and medial cartilage MR relaxation times in individuals with ACL reconstruction: A pilot study. Knee, 2014, 21, 881-885.	1.6	37

#	Article	IF	CITATIONS
73	MRI T1ϕMAPPING OF KNEE JOINT REPAIR. , 2014, , 133-176.		0
74	Quantitative In Vivo HR-pQCT Imaging of 3D Wrist and Metacarpophalangeal Joint Space Width in Rheumatoid Arthritis. Annals of Biomedical Engineering, 2013, 41, 2553-2564.	2.5	60
75	Quantitative MRI of articular cartilage and its clinical applications. Journal of Magnetic Resonance Imaging, 2013, 38, 991-1008.	3.4	98
76	Quantitative MRI of articular cartilage and its clinical applications. Journal of Magnetic Resonance Imaging, 2013, 38, spcone-spcone.	3.4	0
77	Top-Down Study of β2-Microglobulin Deamidation. Analytical Chemistry, 2012, 84, 6150-6157.	6.5	22
78	Longitudinal analysis of T1ï•and T2 quantitative MRI of knee cartilage laminar organization following microfracture surgery. Knee, 2012, 19, 652-657.	1.6	45
79	Quantitative characterization of bone marrow edema pattern in rheumatoid arthritis using 3 tesla MRI. Journal of Magnetic Resonance Imaging, 2012, 35, 211-217.	3.4	28
80	Quantification of vertebral bone marrow fat content using 3 tesla MR spectroscopy: Reproducibility, vertebral variation, and applications in osteoporosis. Journal of Magnetic Resonance Imaging, 2011, 33, 974-979.	3.4	144
81	Quantitative MRI using T1ï•and T2 in human osteoarthritic cartilage specimens: correlation with biochemical measurements and histology. Magnetic Resonance Imaging, 2011, 29, 324-334.	1.8	206
82	Cartilage in Anterior Cruciate Ligament–Reconstructed Knees: MR Imaging T1 _Ï and T2—Initial Experience with 1-year Follow-up. Radiology, 2011, 258, 505-514.	7.3	192
83	Glutamine Deamidation: Differentiation of Glutamic Acid and Î ³ -Glutamic Acid in Peptides by Electron Capture Dissociation. Analytical Chemistry, 2010, 82, 3606-3615.	6.5	74
84	T _{1Ï} and T ₂ quantitative magnetic resonance imaging analysis of cartilage regeneration following microfracture and mosaicplasty cartilage resurfacing procedures. Journal of Magnetic Resonance Imaging, 2010, 32, 914-923.	3.4	39
85	Charge remote fragmentation in electron capture and electron transfer dissociation. Journal of the American Society for Mass Spectrometry, 2010, 21, 646-656.	2.8	38
86	High-Field Magnetic Resonance Imaging Assessment of Articular Cartilage before and after Marathon Running. American Journal of Sports Medicine, 2010, 38, 2273-2280.	4.2	85
87	Bone and Osteoarthritis. , 2010, , 235-266.		0
88	Spatial distribution and relationship of <i>T</i> _{1ï} and <i>T</i> ₂ relaxation times in knee cartilage with osteoarthritis. Magnetic Resonance in Medicine, 2009, 61, 1310-1318.	3.0	129
89	T1rho, T2 and focal knee cartilage abnormalities in physically active and sedentary healthy subjects versus early OA patients—a 3.0-Tesla MRI study. European Radiology, 2009, 19, 132-143.	4.5	195
90	The effect of fixed charge modifications on electron capture dissociation. Journal of the American Society for Mass Spectrometry, 2008, 19, 1514-1526.	2.8	42

0

#	Article	IF	CITATIONS
91	Quantitative assessment of bone marrow edemaâ€like lesion and overlying cartilage in knees with osteoarthritis and anterior cruciate ligament tear using MR imaging and spectroscopic imaging at 3 Tesla. Journal of Magnetic Resonance Imaging, 2008, 28, 453-461.	3.4	93
92	ln vivo <i>T</i> _{1ï} mapping in cartilage using 3D magnetizationâ€prepared angleâ€modulated partitioned <i>k</i> â€space spoiled gradient echo snapshots (3D MAPSS). Magnetic Resonance in Medicine, 2008, 59, 298-307.	3.0	163
93	Use of ¹⁸ O labels to monitor deamidation during protein and peptide sample processing. Journal of the American Society for Mass Spectrometry, 2008, 19, 855-864.	2.8	79
94	Technical evaluation of in vivo abdominal fat and IMCL quantification using MRI and MRSI at 3 T. Magnetic Resonance Imaging, 2008, 26, 188-197.	1.8	26
95	In Vivo T1ϕQuantitative Assessment of Knee Cartilage After Anterior Cruciate Ligament Injury Using 3 Tesla Magnetic Resonance Imaging. Investigative Radiology, 2008, 43, 782-788.	6.2	59
96	In vivo 3T spiral imaging based multi-slice T1ϕmapping of knee cartilage in osteoarthritis. Magnetic Resonance in Medicine, 2005, 54, 929-936.	3.0	158
97	Relationship of MR-derived lactate, mobile lipids, and relative blood volume for gliomas in vivo. American Journal of Neuroradiology, 2005, 26, 760-9.	2.4	67
98	Identification of MRI and ¹ H MRSI parameters that may predict survival for patients with malignant gliomas. NMR in Biomedicine, 2004, 17, 10-20.	2.8	90
99	Analysis of the spatial characteristics of metabolic abnormalities in newly diagnosed glioma patients. Journal of Magnetic Resonance Imaging, 2002, 16, 229-237.	3.4	115

100 Reliable in vivo lactate and lipid estimation in glioma patients. , 0, , .