Chittaranjan Das

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2666460/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rational Development and Characterization of a Ubiquitin Variant with Selectivity for Ubiquitin C-Terminal Hydrolase L3. Biomolecules, 2022, 12, 62.	4.0	5
2	Optimization and Anti-Cancer Properties of Fluoromethylketones as Covalent Inhibitors for Ubiquitin C-Terminal Hydrolase L1. Molecules, 2021, 26, 1227.	3.8	8
3	Insights into Ubiquitin Product Release in Hydrolysis Catalyzed by the Bacterial Deubiquitinase SdeA. Biochemistry, 2021, 60, 584-596.	2.5	4
4	Acquisition of a Mysterious New Domain Modulates the Function of a Bacterial Effector. Biochemistry, 2021, 60, 635-636.	2.5	2
5	Crystal structure of the Thr316Ala mutant of a yeast JAMM deubiquitinase: implication of active-site loop dynamics in catalysis. Acta Crystallographica Section F, Structural Biology Communications, 2021, 77, 163-170.	0.8	0
6	The unity of opposites: Strategic interplay between bacterial effectors to regulate cellular homeostasis. Journal of Biological Chemistry, 2021, 297, 101340.	3.4	10
7	Ubiquitin Câ€Terminal Hydrolase L1: Biochemical and Cellular Characterization of a Covalent Cyanopyrrolidineâ€Based Inhibitor. ChemBioChem, 2020, 21, 712-722.	2.6	32
8	Development of Ubiquitin Variants with Selectivity for Ubiquitin C-Terminal Hydrolase Deubiquitinases. Biochemistry, 2020, 59, 3447-3462.	2.5	11
9	<i>Legionella pneumophila</i> regulates the activity of <scp>UBE</scp> 2N by deamidaseâ€mediated deubiquitination. EMBO Journal, 2020, 39, e102806.	7.8	38
10	Legionella effector MavC targets the Ube2N~Ub conjugate for noncanonical ubiquitination. Nature Communications, 2020, 11, 2365.	12.8	21
11	Fluorescent Probes for Monitoring Serine Ubiquitination. Biochemistry, 2020, 59, 1309-1313.	2.5	6
12	The Two Deubiquitinating Enzymes from <i>Chlamydia trachomatis</i> Have Distinct Ubiquitin Recognition Properties. Biochemistry, 2020, 59, 1604-1617.	2.5	11
13	Regulation of phosphoribosyl ubiquitination by a calmodulin-dependent glutamylase. Nature, 2019, 572, 387-391.	27.8	91
14	Purification and functional characterization of the DUB domain of SdeA. Methods in Enzymology, 2019, 618, 343-355.	1.0	7
15	Uncovering the Structural Basis of a New Twist in Protein Ubiquitination. Trends in Biochemical Sciences, 2019, 44, 467-477.	7.5	18
16	Dynamic X-ray diffraction sampling for protein crystal positioning. Journal of Synchrotron Radiation, 2017, 24, 188-195.	2.4	19
17	A unique deubiquitinase that deconjugates phosphoribosyl-linked protein ubiquitination. Cell Research, 2017, 27, 865-881.	12.0	70
18	Ubiquitin Chains Modified by the Bacterial Ligase SdeA Are Protected from Deubiquitinase Hydrolysis. Biochemistry, 2017, 56, 4762-4766.	2.5	16

CHITTARANJAN DAS

#	Article	IF	CITATIONS
19	Synchrotron X-Ray Diffraction Dynamic Sampling for Protein Crystal Centering. IS&T International Symposium on Electronic Imaging, 2017, 29, 6-9.	0.4	2
20	Guiding synchrotron X-ray diffraction by multimodal video-rate protein crystal imaging. Journal of Synchrotron Radiation, 2016, 23, 959-965.	2.4	8
21	Ubiquitination independent of E1 and E2 enzymes by bacterial effectors. Nature, 2016, 533, 120-124.	27.8	284
22	Accessing Three-Dimensional Crystals with Incorporated Guests through Metal-Directed Coiled-Coil Peptide Assembly. Journal of the American Chemical Society, 2016, 138, 11051-11057.	13.7	47
23	Structural basis of substrate recognition by a bacterial deubiquitinase important for dynamics of phagosome ubiquitination. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15090-15095.	7.1	88
24	Dynamics of an Active-Site Flap Contributes to Catalysis in a JAMM Family Metallo Deubiquitinase. Biochemistry, 2015, 54, 6038-6051.	2.5	10
25	Intercalating dyes for enhanced contrast in second-harmonic generation imaging of protein crystals. Acta Crystallographica Section D: Biological Crystallography, 2015, 71, 1471-1477.	2.5	4
26	A Conserved Acidic Residue in Phenylalanine Hydroxylase Contributes to Cofactor Affinity and Catalysis. Biochemistry, 2014, 53, 6834-6848.	2.5	7
27	Insights into the Mechanism of Deubiquitination by JAMM Deubiquitinases from Cocrystal Structures of the Enzyme with the Substrate and Product. Biochemistry, 2014, 53, 3199-3217.	2.5	56
28	An additional substrate binding site in a bacterial phenylalanine hydroxylase. European Biophysics Journal, 2013, 42, 691-708.	2.2	10
29	High-throughput compatible fluorescence resonance energy transfer-based assay to identify small molecule inhibitors of AMSH deubiquitinase activity. Analytical Biochemistry, 2013, 440, 71-77.	2.4	12
30	Mechanism of Recruitment and Activation of the Endosome-Associated Deubiquitinase AMSH. Biochemistry, 2013, 52, 7818-7829.	2.5	34
31	Mechanism for recruitment of the endosomeâ€associated deubiquitinating enzyme, AMSH. FASEB Journal, 2013, 27, 782.2.	0.5	0
32	The co-crystal structure of ubiquitin carboxy-terminal hydrolase L1 (UCHL1) with a tripeptide fluoromethyl ketone (Z-VAE(OMe)-FMK). Bioorganic and Medicinal Chemistry Letters, 2012, 22, 3900-3904.	2.2	33
33	Contribution of active site glutamine to rate enhancement in ubiquitin Câ€ŧerminal hydrolases. FEBS Journal, 2012, 279, 1106-1118.	4.7	16
34	Structural and Thermodynamic Comparison of the Catalytic Domain of AMSH and AMSH-LP: Nearly Identical Fold but Different Stability. Journal of Molecular Biology, 2011, 413, 416-429.	4.2	43
35	Ubiquitin vinyl methyl ester binding orients the misaligned active site of the ubiquitin hydrolase UCHL1 into productive conformation. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 9117-9122.	7.1	96
36	Structural basis for conformational plasticity of the Parkinson's disease-associated ubiquitin hydrolase UCH-L1. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 4675-4680.	7.1	162