Elena D Vassileva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2665901/publications.pdf Version: 2024-02-01

FLENA D VASSILEVA

#	Article	IF	CITATIONS
1	Polyelectrolyte complexes of chitosan and sodium alginate as a drug delivery system for diclofenac sodium. Polymer International, 2022, 71, 668-678.	1.6	13
2	Novel poly(sulfobetaine methacrylate) based carriers as potential ocular drug delivery systems for timolol maleate. Polymer International, 2022, 71, 662-667.	1.6	7
3	Gelatin micro―and nanocapsules obtained via sonochemical method. Journal of Applied Polymer Science, 2020, 137, 49584.	1.3	2
4	Antibiofilm poly(carboxybetaine methacrylate) hydrogels for chronic wounds dressings. European Polymer Journal, 2020, 132, 109673.	2.6	9
5	Novel hybrid chitosan/calcium phosphates microgels for remineralization of demineralized enamel – A model study. European Polymer Journal, 2019, 119, 14-21.	2.6	19
6	Poly(sulfobetaine methacrylate)/poly(ethylene glycol) hydrogels for chronic wounds management. European Polymer Journal, 2019, 117, 391-401.	2.6	13
7	Polyzwitterionic hydrogels as wound dressings with enzymatic debridement functionality for highly exuding wounds. Polymer International, 2019, 68, 1626-1635.	1.6	8
8	Bottom-Up Synthesis of Polymeric Micro- and Nanoparticles with Regular Anisotropic Shapes. Macromolecules, 2018, 51, 7456-7462.	2.2	34
9	Drug transport in stimuli responsive acrylic and methacrylic interpenetrating polymer networks. Journal of Applied Polymer Science, 2017, 134, 45380.	1.3	5
10	Interpenetrating polymer networks of poly(methacrylic acid) and polyacrylamide: synthesis, characterization and potential application for sustained drug delivery. RSC Advances, 2016, 6, 64239-64246.	1.7	6
11	In situ calcium phosphate deposition in hydrogels of poly(acrylic acid)–polyacrylamide interpenetrating polymer networks. RSC Advances, 2016, 6, 16274-16284.	1.7	11
12	Interpenetrating Polymer Networks of Poly(Acrylic Acid) and Polyacrylamide for Sustained Verapamil Hydrochloride Release. Macromolecular Symposia, 2015, 358, 225-231.	0.4	6
13	Elucidation of the Chemical and Morphological Structure of Doubleâ€Network (DN) Hydrogels by Highâ€Resolution Magic Angle Spinning (HRMAS) NMR Spectroscopy. Chemistry - A European Journal, 2011, 17, 14867-14877.	1.7	19
14	Sonochemically born proteinaceous micro- and nanocapsules. Advances in Protein Chemistry and Structural Biology, 2010, 80, 205-252.	1.0	7
15	Self-Assembly, Antipolyelectrolyte Effect, and Nonbiofouling Properties of Polyzwitterions. Biomacromolecules, 2006, 7, 1329-1334.	2.6	169
16	Epoxy/alumina nanoparticle composites. II. Influence of silane coupling agent treatment on mechanical performance and wear resistance. Journal of Applied Polymer Science, 2006, 101, 4410-4417.	1.3	42
17	Synthesis and some Mechanical Properties of Polysulfobetaine – Polyacrylamide Double Networks. E-Polymers, 2006, 6, .	1.3	2
18	Epoxy/alumina nanoparticle composites. I. Dynamic mechanical behavior. Journal of Applied Polymer Science, 2003, 89, 3774-3785.	1.3	96

ELENA D VASSILEVA

#	Article	IF	CITATIONS
19	Effect of Processing Conditions on Mechanical Properties of Pretreated Gelatin Samples. International Journal of Polymeric Materials and Polymeric Biomaterials, 2002, 51, 103-132.	1.8	4
20	Influence of physical cross-links in amorphous PET on room temperature ageing. Macromolecular Symposia, 2002, 185, 35-51.	0.4	5
21	Biodegradation of Chemically Modified Gelatin Films in a Simulated Natural Environment. Biotechnology and Biotechnological Equipment, 2001, 15, 116-123.	0.5	17
22	Biodegradation of chemically modified gelatin films in lake and river waters. Journal of Applied Polymer Science, 2000, 76, 29-37.	1.3	31
23	Mechanical properties of native and crosslinked gelatins in a bending deformation. Journal of Applied Polymer Science, 2000, 76, 2041-2048.	1.3	22
24	Biodegradation of chemically modified gelatin films in soil. Journal of Applied Polymer Science, 2000, 78, 1341-1347.	1.3	58
25	Crystallization of water in some crosslinked gelatins. European Polymer Journal, 2000, 36, 1055-1061.	2.6	64
26	SOLUBILIZATION AND BIODEGRADATION OF CROSS-LINKED GELATINS BY ALKALINE PROTEINASE. Polymer-Plastics Technology and Engineering, 2000, 39, 683-697.	1.9	6
27	DSC and TGA studies of the behavior of water in native and crosslinked gelatin. Journal of Applied Polymer Science, 1999, 71, 465-470.	1.3	49
28	New aspects of thermal treatment effects on gelatin films studied by microhardness. Macromolecular Chemistry and Physics, 1999, 200, 405-412.	1.1	12
29	Melting of Gelatin Crystals below Glass Transition Temperature: A Direct Crystal-Glass Transition as Revealed by Microhardness. International Journal of Polymeric Materials and Polymeric Biomaterials, 1999, 43, 195-206.	1.8	15
30	Enzymatic degradation of formaldehyde-crosslinked gelatin. Biotechnology Letters, 1998, 12, 889-892.	0.5	19
31	Gelatin films with very high surface hardness. Macromolecular Rapid Communications, 1998, 19, 451-454.	2.0	11