Arfana Mallah

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2665760/publications.pdf

Version: 2024-02-01

378	840776 11	996975
citations	h-index	g-index
15	15	220
docs citations	times ranked	citing authors
	citations 15	378 11 citations h-index 15 15

#	Article	IF	CITATIONS
1	Electrochemical quantification of mancozeb through tungsten oxide/reduced graphene oxide nanocomposite: A potential method for environmental remediation. Food and Chemical Toxicology, 2022, 161, 112843.	3.6	124
2	Simultaneous Determination of Quercetin, Rutin, Naringin, and Naringenin in Different Fruits by Capillary Zone Electrophoresis. Food Analytical Methods, 2017, 10, 83-91.	2.6	49
3	Ultra-selective determination of carbofuran by electrochemical sensor based on nickel oxide nanoparticles stabilized by ionic liquid. Monatshefte FÃ $^1\!/\!4$ r Chemie, 2020, 151, 1689-1696.	1.8	32
4	A new electrochemical method for the detection of quercetin in onion, honey and green tea using Co3O4 modified GCE. Journal of Food Measurement and Characterization, 2021, 15, 3720-3730.	3.2	29
5	An improved non-enzymatic electrochemical sensor amplified with CuO nanostructures for sensitive determination of uric acid. Open Chemistry, 2021, 19, 481-491.	1.9	26
6	Current Perspective and Developments in Electrochemical Sensors Modified with Nanomaterials for Environmental and Pharmaceutical Analysis. Current Analytical Chemistry, 2022, 18, 102-115.	1.2	20
7	Spatial analysis and human health risk assessment of elements in ground water of District Hyderabad, Pakistan using ArcGIS and multivariate statistical analysis. Environmental Research, 2022, 210, 112915.	7.5	19
8	Fabrication of sensor based on polyvinyl alcohol functionalized tungsten oxide/reduced graphene oxide nanocomposite for electrochemical monitoring of 4-aminophenol. Environmental Research, 2022, 212, 113372.	7.5	19
9	NiO nanostructures based functional none-enzymatic electrochemical sensor for ultrasensitive determination of endosulfan in vegetables. Journal of Food Measurement and Characterization, 2021, 15, 2695-2704.	3.2	17
10	Quantitative separation of hesperidin, chrysin, epicatechin, epigallocatechin gallate, and morin using ionic liquid as a buffer additive in capillary electrophoresis. Electrophoresis, 2018, 39, 1606-1612.	2.4	16
11	A Capillary Zone Electrophoretic Method for Simultaneous Determination of Seven Drugs in Pharmaceuticals and in Human Urine. Journal of AOAC INTERNATIONAL, 2009, 92, 1382-1389.	1.5	12
12	A MEKC method for naringenin from natural and biological samples. Analytical Methods, 2015, 7, 4521-4527.	2.7	6
13	Exploring electrocatalytic proficiencies of CuO nanostructure for simultaneous determination of bentazone and mexacarbate pesticides. Applied Nanoscience (Switzerland), 2021, 11, 1889-1902.	3.1	5
14	A Novel Micellar Electrokinetic Chromatographic Method for Separation of Metal-DDTC Complexes. Scientific World Journal, The, 2012, 2012, 1-8.	2.1	2
15	Reversed-Phase Liquid Chromatographic Separation and Determination of Ni(II), Cu(II), Pd(II), and Ag(I) Using 2-Pyrrolecarboxaldehyde-4-phenylsemicarbazone as a Complexing Reagent. Journal of Chemistry, 2013, 2013, 1-5.	1.9	2