
Golovin Is

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/266491/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of microalloying with Ca on the microstructure and mechanical properties of Mg-6 mass%Zn alloys. Materials and Design, 2016, 98, 285-293.	3.3	110
2	Fabrication, characterization, and mechanical properties of spark plasma sintered Al–BN nanoparticle composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 642, 104-112.	2.6	81
3	Anelasticity of Fe–Al alloys, revisited. Intermetallics, 2004, 12, 125-150.	1.8	79
4	Improved mechanical property and internal friction of pure Mg processed by ECAP. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 556, 588-594.	2.6	74
5	Damping in some cellular metallic materials. Journal of Alloys and Compounds, 2003, 355, 2-9.	2.8	72
6	Phase transitions as a tool for tailoring magnetostriction in intrinsic Fe-Ga composites. Acta Materialia, 2017, 130, 229-239.	3.8	71
7	Microstructure evolution and mechanical properties of nano-SiCp/AZ91 composite processed by extrusion and equal channel angular pressing (ECAP). Materials Characterization, 2016, 121, 222-230.	1.9	70
8	Effect of Zr on the microstructure, recrystallization behavior, mechanical properties and electrical conductivity of the novel Al-Er-Y alloy. Journal of Alloys and Compounds, 2018, 765, 1-6.	2.8	58
9	Anelasticity of Fe–Ca based alloys. Materials and Design, 2015, 88, 577-587.	3.3	55
10	Effect of heat treatment on diffusion, internal friction, microstructure and mechanical properties of ultra-fine-grained nickel severely deformed by equal-channel angular pressing. Acta Materialia, 2015, 82, 11-21.	3.8	55
11	In situ neutron diffraction study of bulk phase transitions in Fe-27Ga alloys. Materials and Design, 2016, 98, 113-119.	3.3	55
12	Study of atom diffusivity and related relaxation phenomena in Fe3Al–(Ti,Nb)–C alloys. Acta Materialia, 2005, 53, 2581-2594.	3.8	53
13	Isothermal martensitic transformation in metamagnetic shape memory alloys. Journal of Applied Physics, 2010, 107, .	1.1	52
14	Superplastic deformation mechanisms in fine-grained Al–Mg based alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 627, 31-41.	2.6	47
15	Influence of composition and heat treatment on damping and magnetostrictive properties of Fe–18%(Ga + Al) alloys. Acta Materialia, 2014, 78, 93-102.	3.8	45
16	Superplastic deformation behaviour and microstructure evolution of near-α Ti-Al-Mn alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 708, 469-477.	2.6	45
17	Snoek Relaxation in Fe–Cr Alloys and Interstitial–Substitutional Interaction. Physica Status Solidi A, 1997, 160, 49-60.	1.7	44
18	Internal friction in metallic foams and some related cellular structures. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 370, 504-511.	2.6	44

#	Article	IF	CITATIONS
19	Role of the β-phase in grain boundary and dislocation anelasticity in binary Al–Mg alloys. Journal of Alloys and Compounds, 2013, 577, 622-632.	2.8	42
20	Effect of homogenisation treatment on precipitation, recrystallisation and properties of Al – 3% Mg – TM alloys (TM = Mn, Cr, Zr). Materials and Design, 2016, 109, 197-208.	3.3	40
21	Intermetallics formed at interface of ultrafine grained Al/Mg bi-layered disks processed by high pressure torsion at room temperature. Materials Letters, 2016, 181, 187-190.	1.3	38
22	Cooling rate as a tool of tailoring structure of Fe-(9–33%)Ga alloys. Intermetallics, 2019, 114, 106610.	1.8	38
23	Influence of Tb on structure and properties of Fe-19%Ga and Fe-27%Ga alloys. Journal of Alloys and Compounds, 2017, 707, 51-56.	2.8	37
24	Effect of Substitutional Ordering on the Carbon Snoek Relaxation in Fe–Al–C Alloys. Physica Status Solidi A, 1998, 168, 403-415.	1.7	35
25	Fabrication and characteristics of melt-spun Al ribbons reinforced with nano/micro-BN phases. Acta Materialia, 2013, 61, 7604-7615.	3.8	35
26	Mechanism of damping capacity of high-chromium steels and α-Fe and its dependence on some external factors. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1994, 25, 111-124.	1.1	34
27	Panel discussion on the application of HDM. Journal of Alloys and Compounds, 2003, 355, 230-240.	2.8	34
28	Effect of heat treatment on internal friction in ECAP processed commercial pure Mg. Journal of Alloys and Compounds, 2013, 549, 38-45.	2.8	33
29	Structural mechanisms of anelasticity in Fe–Ga-based alloys. Journal of Alloys and Compounds, 2014, 584, 322-326.	2.8	33
30	Phase diagram of magnetostrictive Fe-Ga alloys: insights from theory and experiment. Phase Transitions, 2019, 92, 101-116.	0.6	33
31	Effect of heat treatment on ordering and functional properties of the Fe–19Ga alloy. Journal of Alloys and Compounds, 2015, 619, 58-65.	2.8	32
32	Diffusionless nature of D0 3 Â→ÂL1 2 transition in Fe 3 Ga alloys. Journal of Alloys and Compounds, 2016, 656, 897-902.	2.8	31
33	Influence of carbon and nitrogen on solid solution decay and "475 °C Embrittlement―of High-Chromium Ferritic Steels. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1992, 23, 2567-2579.	1.4	30
34	Mechanical spectroscopy of the Zener relaxation in Fe–22Al and Fe–26Al alloys. Intermetallics, 2006, 14, 570-577.	1.8	30
35	Comparative study of structural phase transitions in bulk and powdered Fe–27Ga alloy by real-time neutron thermodiffractometry. Journal of Applied Crystallography, 2017, 50, 198-210.	1.9	30
36	The Fe–Ga phase diagram: Revisited. Journal of Alloys and Compounds, 2020, 846, 156486.	2.8	30

#	Article	IF	CITATIONS
37	The impact of elastic and plastic strain on relaxation and crystallization of Pd–Ni–P-based bulk metallic glasses. Acta Materialia, 2015, 90, 318-329.	3.8	29
38	Structure and Properties of Fe–Ga Alloys as Promising Materials for Electronics. Physics of Metals and Metallography, 2020, 121, 851-893.	0.3	29
39	Fatigue-related damping in some cellular metallic materials. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 370, 537-541.	2.6	28
40	Grain-boundary relaxation in copper before and after equal-channel angular pressing and recrystallization. Physics of Metals and Metallography, 2010, 110, 405-413.	0.3	28
41	Relaxation mechanisms in Fe-Al-C alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2003, 34, 255-266.	1.1	27
42	Structure and anelasticity of Fe3Ga and Fe3(Ga,Al) type alloys. Journal of Alloys and Compounds, 2015, 644, 959-967.	2.8	27
43	Phase transition induced anelasticity in Fe–Ga alloys with 25 and 27%Ga. Journal of Alloys and Compounds, 2016, 675, 393-398.	2.8	27
44	Effect of heat treatment on the grain size control, superplasticity, internal friction, and mechanical properties of zirconium-bearing aluminum-based alloy. Journal of Alloys and Compounds, 2021, 856, 157455.	2.8	27
45	Structure and magnetic properties of Fe-Ga alloys doped by Tb. Journal of Alloys and Compounds, 2018, 758, 214-223.	2.8	26
46	Antiphase domains or dispersed clusters? Neutron diffraction study of coherent atomic ordering in Fe3Al-type alloys. Acta Materialia, 2018, 153, 45-52.	3.8	26
47	Damping in some cellular metalic materials due to microplasticity. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 370, 531-536.	2.6	25
48	Mechanisms of anelasticity in Fe–13Ga alloy. Intermetallics, 2011, 19, 453-459.	1.8	25
49	Tb-dependent phase transitions in Fe-Ga functional alloys. Intermetallics, 2018, 93, 55-62.	1.8	25
50	Microstructure investigation on magnetostrictive Fe100-xGax and (Fe100-xGax)99.8Tb0.2 alloys for 19 ≤ x ≤29. Intermetallics, 2019, 115, 106628.	1.8	25
51	Structure induced anelasticity in Fe3Me (MeÂ=ÂAl, Ga, Ge) alloys. Journal of Alloys and Compounds, 2016, 688, 310-319.	2.8	24
52	Anelasticity of Fe3Al intermetallic compounds. Scripta Materialia, 2004, 50, 1187-1192.	2.6	23
53	Anelastic relaxation and structure of ternary Fe–Al–Me alloys with Me=Co, Cr, Ge, Mn, Nb, Si, Ta, Ti, Zr. International Journal of Materials Research, 2006, 97, 1078-1092.	0.1	23
54	Study of damping capacity of Fe–5.4Al–0.05Ti alloy. Journal of Alloys and Compounds, 2015, 653, 460-467.	2.8	23

#	Article	IF	CITATIONS
55	Hydrogen influence on plastic deformation mechanism of β-titanium alloys of Ti–Nb system. Journal of Alloys and Compounds, 1997, 253-254, 144-147.	2.8	22
56	Time-Temperature-Transformation from metastable to equilibrium structure in Fe-Ga. Materials Letters, 2020, 263, 127257.	1.3	22
57	Effect of Plastic Deformation on the Carbon Internal Friction Peak in Austenitic Steels. Physica Status Solidi A, 2000, 178, 621-632.	1.7	20
58	Interstitial distribution in Fe–Al and Fe–Cr quenched and aged alloys:. Journal of Alloys and Compounds, 2000, 310, 356-362.	2.8	20
59	On dislocation-related internal friction in Fe-22–31at.% Al. Journal of Alloys and Compounds, 2004, 378, 268-273.	2.8	20
60	Effect of alloying α-Fe with aluminum, silicon, cobalt, and germanium on the snoek relaxation parameters. Physics of Metals and Metallography, 2006, 102, 593-603.	0.3	20
61	Investigation of recrystallization in an Al-0.3 Mg alloy by the method of internal friction. Physics of Metals and Metallography, 2011, 112, 622-632.	0.3	19
62	Phase transitions in Fe-27Ga alloys: Guidance to develop functionality. Intermetallics, 2018, 100, 20-26.	1.8	19
63	In situ studies of atomic ordering in Fe-19Ga type alloys. Intermetallics, 2019, 105, 6-12.	1.8	19
64	High damping in Fe-Ga-La alloys: Phenomenological model for magneto-mechanical hysteresis damping and experiment. Journal of Materials Science and Technology, 2021, 72, 69-80.	5.6	19
65	Effect of severe plastic deformation on internal friction of an Fe–26at.% Al alloy and titanium. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 442, 165-169.	2.6	18
66	Influence of cyclic loading on the structure and double-stage structure relaxation behavior of a Zr-Cu-Fe-Al metallic glass. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 742, 526-531.	2.6	18
67	Study of Ordering and Properties in Fe-Ga Alloys With 18Âand 21Âat. pct Ga. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 1131-1139.	1.1	17
68	Ordering processes in Fe-Ga alloys studied by positron annihilation lifetime spectroscopy. Materials Letters, 2016, 171, 46-49.	1.3	17
69	Anelasticity of iron-aluminide Fe3Al type single and polycrystals. Journal of Alloys and Compounds, 2018, 746, 660-669.	2.8	17
70	From metastable to stable structure: the way to construct functionality in Fe-27Ga alloy. Journal of Alloys and Compounds, 2018, 751, 364-369.	2.8	17
71	Comparative study of structure and phase transitions in Fe-(25–27)%Ga alloys. Journal of Alloys and Compounds, 2019, 811, 152030.	2.8	17
72	Internal friction in Fe-Ga alloys at elevated temperatures. Journal of Alloys and Compounds, 2019, 785, 1257-1263.	2.8	17

#	Article	IF	CITATIONS
73	Volume effect upon martensitic transformation in Ti29.7Ni50.3Hf20 high temperature shape memory alloy. Scripta Materialia, 2020, 178, 67-70.	2.6	17
74	The mechanism of the anelastic X relaxation in the intermetallic compound Fe3Al. Scripta Materialia, 2005, 52, 57-62.	2.6	16
75	Mechanical spectroscopy in Fe–Al–Si alloys at elevated temperatures. Journal of Alloys and Compounds, 2009, 468, 96-102.	2.8	16
76	Effect of Mn and Cr additions on kinetics of recrystallization and parameters of grain-boundary relaxation of Al-4.9Mg alloy. Physics of Metals and Metallography, 2013, 114, 246-255.	0.3	16
77	Anelasticity of the Fe-Ga alloys in the range of Zener relaxation. Journal of Alloys and Compounds, 2018, 730, 424-433.	2.8	16
78	The first- and second-order isothermal phase transitions in Fe ₃ Ga-type compounds. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2019, 75, 1024-1033.	0.5	16
79	Composition dependence of tracer diffusion coefficients in Fe–Ga alloys: A case study by a tracer-diffusion couple method. Acta Materialia, 2021, 203, 116446.	3.8	16
80	Influence of Al concentration on the short-range and long-range diffusion of carbon in Fe–Al alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 442, 128-132.	2.6	15
81	Anelastic relaxation in ternary Fe–Al–Me alloys: MeCo, Cr, Ge, Mn, Nb, Si, Ta, Ti, Zr. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 442, 92-98.	2.6	15
82	Internal friction, dilatometric and calorimetric study of anelasticity in Fe–13at.% Ga and Fe–8at.% Al–3at.% Ga alloys. Journal of Alloys and Compounds, 2011, 509, 8165-8170.	2.8	15
83	The Effect of Annealing on the Internal Friction in ECAP-Modified Ultrafine Grained Copper. Solid State Phenomena, 0, 184, 289-294.	0.3	15
84	Internal friction in (Fe80Ga20)99.95(NbC)0.05 alloy at elevated temperatures. Intermetallics, 2012, 29, 133-139.	1.8	15
85	Internal friction and evolution of ultrafine-grained structure during annealing of Grade-4 titanium subjected to severe plastic deformation. Physics of Metals and Metallography, 2013, 114, 1078-1085.	0.3	15
86	Stabilization of bcc-born phases in Fe-27Ga by adding Tb: Comparative in situ neutron diffraction study. Materials Letters, 2016, 181, 67-70.	1.3	15
87	Mechanical spectroscopy as an in situ tool to study first and second order transitions in metastable Fe-Ga alloys. Journal of Alloys and Compounds, 2019, 790, 1149-1156.	2.8	15
88	Internal friction in Ti29.7Ni50.3Hf20 alloy with high temperature shape memory effect. Materials Letters, 2020, 262, 127025.	1.3	15
89	First- and second-order phase transitions in Fe-(17-19)at.%Ga alloys. Materials Letters, 2020, 279, 128508.	1.3	15
90	Interactions between solute atoms in Fe–Si–Al–C alloys as studied by mechanical spectroscopy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 521-522, 63-66.	2.6	14

#	Article	IF	CITATIONS
91	Order controlled dislocations and grain boundary mobility in Fe–Al–Cr alloys. Journal of Alloys and Compounds, 2012, 537, 117-122.	2.8	14
92	Contributions of phase and structural transformations in multicomponent Al-Mg alloys to the linear and nonlinear mechanisms of anelasticity. Physics of Metals and Metallography, 2014, 115, 192-201.	0.3	14
93	Mechanical spectroscopy of atomic ordering in Fe-(16â^'21)Ga-RE alloys. Journal of Alloys and Compounds, 2021, 864, 158819.	2.8	14
94	Strain-induced interaction of hydrogen atoms with dissolved atoms in IVA group metals. Journal of Alloys and Compounds, 2002, 345, 1-9.	2.8	13
95	Structure and anelasticity of ordered and disordered Fe–Ce alloys. Intermetallics, 2010, 18, 913-921.	1.8	13
96	Mechanical spectroscopy of Al-Mg alloys. Physics of Metals and Metallography, 2013, 114, 327-338.	0.3	13
97	Damping Mechanisms in High Damping Materials. Key Engineering Materials, 2006, 319, 225-230.	0.4	12
98	Damping capacity, magnetic and mechanical properties of Fe-18Cr alloy. Journal of Magnetism and Magnetic Materials, 2020, 494, 165777.	1.0	12
99	Texture formation in FeGa alloy at cold hydrostatic extrusion and primary recrystallization. Journal of Alloys and Compounds, 2020, 816, 153283.	2.8	12
100	Structure and anelasticity of Fe3Ge alloy. Intermetallics, 2007, 15, 1548-1557.	1.8	11
101	Structure of the Fe-Mn-Si alloys submitted to γ ↔ ε thermocycling. Materials Characterization, 2018, 141, 223-228.	1.9	11
102	Mechanical spectroscopy of phase transitions in Fe–(23–38)Ga-RE alloys. Journal of Alloys and Compounds, 2021, 874, 159882.	2.8	11
103	Anelastic effects connected with isothermal martensitic transformations in 24Ni4Mo austenitic and 12Cr9Ni4Mo maraging steels. Journal of Alloys and Compounds, 2000, 310, 411-417.	2.8	10
104	Internal friction in Fe–Al–Si alloys at elevated temperatures. Intermetallics, 2006, 14, 1238-1244.	1.8	10
105	Effect of thermal cycling on microstructure and damping capacity of Fe–26Mn–4Si alloy. Materials Characterization, 2020, 159, 110001.	1.9	10
106	Mechanical spectroscopy of hydrogen-absorbing quasicrystals. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 370, 78-82.	2.6	9
107	Internal friction in a Ni–Ti-based glassy-crystal alloy. Journal of Alloys and Compounds, 2013, 579, 633-637.	2.8	9
108	Coherent cluster atomic ordering in the Fe-27Al intermetallic compound. JETP Letters, 2016, 104, 539-545.	0.4	9

Golovin Is

#	ARTICLE	IF	CITATIONS
109	Anelasticity of Phase Transitions and Magnetostriction in Fe-(27-28%)Ga Alloys. Materials Research, 2018, 21, .	0.6	9
110	Anomalous Behavior of an α → γ Phase Transition in Iron: Results of In Situ Neutron Diffraction Experiment. JETP Letters, 2018, 107, 558-563.	0.4	9
111	Effects of Ordering in Fe-xAl Alloys. JETP Letters, 2019, 110, 585-591.	0.4	9
112	Temperature evolution of Fe–27Ga structure: comparison of <i>in situ</i> X-ray and neutron diffraction studies. Journal of Applied Crystallography, 2020, 53, 1343-1352.	1.9	9
113	Interactions of Dissolved Atoms and Carbon Diffusion in Fe-Cr and Fe-Al Alloys. Defect and Diffusion Forum, 2001, 194-199, 73-78.	0.4	8
114	Mechanical Spectroscopy of Fe-Al-C Alloys Ordering. Solid State Phenomena, 2003, 89, 279-286.	0.3	8
115	Anelasticity in Fe–Al–Cr alloys at elevated temperatures. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 521-522, 67-72.	2.6	8
116	Mechanical spectroscopy of Snoek type relaxation. Metal Science and Heat Treatment, 2012, 54, 208-216.	0.2	8
117	Mechanisms of linear anelasticity in Fe-M and Fe-Al-M (M = Ga, Ge) alloys. Physics of Metals and Metallography, 2013, 114, 1018-1030.	0.3	8
118	Fe-Ga-Tb alloys for soft magnetic applications. Journal of Magnetism and Magnetic Materials, 2020, 497, 165987.	1.0	8
119	Crystal structure and phase composition evolution during heat treatment of Fe-45Ga alloy. Intermetallics, 2021, 131, 107110.	1.8	8
120	Question of the mechanism of formation of the damping condition of high-chromium ferritic steels. Metal Science and Heat Treatment, 1993, 35, 526-533.	0.2	7
121	Zener relaxation in ordered and disordered Fe–(22–28%)Al alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 442, 86-91.	2.6	7
122	Mechanical Spectroscopy of High Pressure Torsion Deformed Fe-Based Alloys and Ti. Materials Science Forum, 2006, 503-504, 745-750.	0.3	7
123	Mechanical Spectroscopy of the Fe-25Al-Cr Alloys in Medium Temperature Range. Solid State Phenomena, 0, 137, 99-108.	0.3	7
124	Roomâ€ŧemperature dynamic quasiâ€elastic mechanical behavior of a Zr–Cu–Fe–Al bulk metallic glass. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 450-456.	0.8	7
125	Influence of spinodal decomposition on structure and thermoelastic martensitic transition in MnCuAlNi alloy. Materials Letters, 2020, 275, 128069.	1.3	7
126	Texture and Magnetostriction in Warm Rolled and Recrystallized Fe–Ga Alloy. Physics of Metals and Metallography, 2021, 122, 389-395.	0.3	7

#	Article	IF	CITATIONS
127	Internal friction and modulus defect in α-Fe-based, high-alloyed (Cr, Mo) hidamets. Journal of Alloys and Compounds, 1994, 211-212, 147-151.	2.8	6
128	Amplitude Dependent Damping of Some Metallic Foams. Solid State Phenomena, 2003, 89, 267-272.	0.3	6
129	Cluster-Like Structure of Fe-Based Alloys with Enhanced Magnetostriction. Journal of Surface Investigation, 2020, 14, S11-S14.	0.1	6
130	Fe13Ga9 intermetallic in bcc-base Fe–Ga alloy. Intermetallics, 2021, 131, 107059.	1.8	6
131	Dispersed clusters in (Fe,Cr)3Al alloys: Neutron time-of-flight diffraction study. Physical Review Materials, 2019, 3, .	0.9	6
132	Damping in AZ31 ECAP-Processed Alloy. Solid State Phenomena, 0, 137, 181-188.	0.3	5
133	Structure and Anelasticity of Fe-Ge Alloys. Solid State Phenomena, 2008, 137, 59-68.	0.3	5
134	Magnetomechanical and Structural Internal Friction in Ni-Mn-In-Co Metamagnetic Shape Memory Alloy. Solid State Phenomena, 2012, 184, 372-377.	0.3	5
135	Effect of adding chromium on internal friction and superplasticity of alloys of the Al – Mg system. Metal Science and Heat Treatment, 2012, 54, 276-280.	0.2	5
136	Study of order–disorder transitions in Fe–Ge alloys and related anelastic phenomena. Journal of Alloys and Compounds, 2013, 554, 348-356.	2.8	5
137	Internal friction sensitivity to precipitation in Al-12 wt% Mg alloy. Materials Characterization, 2017, 134, 49-54.	1.9	5
138	Spinodal decomposition influence of austenite on martensitic transition in a Mn-13 at.%Cu alloy. Journal of Alloys and Compounds, 2021, 853, 157061.	2.8	5
139	Neutron scattering in studies of Fe-based functional alloys (Fe–Ga, Fe–Al). Physics-Uspekhi, 2021, 64, 702-721.	0.8	5
140	Spinodal decomposition in ternary Mn-Cu-Cr alloy and its influence on martensitic transition temperatures. Journal of Alloys and Compounds, 2021, 884, 161082.	2.8	5
141	Structure and properties of high damping Fe-Ga based alloy. Metallic Materials, 2016, 53, 267-274.	0.2	5
142	Magnetostriction and damping of forced vibrations in Fe-Cr-Mo-Al alloy. Materials Letters, 2022, 314, 131863.	1.3	5
143	Damping of Some Aluminium Foams at Low Amplitudes. Solid State Phenomena, 2003, 89, 261-266.	0.3	4
144	Damping caused by microplasticity in porous 316L steels. Philosophical Magazine, 2005, 85, 1557-1574.	0.7	4

Golovin Is

#	Article	IF	CITATIONS
145	Mechanical Spectroscopy and Neutron Diffraction Studies in Fe-Al-Si Alloys. Solid State Phenomena, 2008, 137, 91-98.	0.3	4
146	Mechanisms of anelasticity in Fe–Ge-based alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 521-522, 55-58.	2.6	4
147	Effect of microadditions of magnesium and zinc in aluminum upon heating of cold-rolled sheets. Physics of Metals and Metallography, 2012, 113, 795-802.	0.3	4
148	Fine-Grained Structure and Superplasticity of Al – Cu – Mg – Fe - Ni Alloys. Materials Science Forum, 2012, 735, 55-60.	0.3	4
149	Effect of high magnetic field on the phase transition in Fe-24%Ga and Fe-27%Ga during isothermal annealing. Journal of Magnetism and Magnetic Materials, 2020, 514, 167284.	1.0	4
150	In-grain phase separation and structural ordering in Fe–Ga alloys seen from reciprocal space. Intermetallics, 2021, 128, 107016.	1.8	4
151	Deformation of Al85Y8Ni5Co2 Metallic Glasses under Cyclic Mechanical Load and Uniform Heating. Metals, 2021, 11, 908.	1.0	4
152	Structure evolution of as-cast metastable Fe-38Ga alloy towards equilibrium. Journal of Alloys and Compounds, 2021, 889, 161782.	2.8	4
153	Enhancement of the magneto-mechanical properties in directional solidified Fe80Al20 alloys by doping Tb. Journal of Alloys and Compounds, 2022, 893, 162262.	2.8	4
154	Low-temperature metastable-to-equilibrium phase transitions in Fe–Ga alloys. Intermetallics, 2022, 145, 107540.	1.8	4
155	Influence of initial deformation on the damping capacity of ferritic high-chromium Kh16 type steel. Metal Science and Heat Treatment, 1993, 35, 418-421.	0.2	3
156	Effect of plastic strain on the temperature spectrum of internal friction of austenitic and ferritic steels. Metal Science and Heat Treatment, 1997, 39, 376-383.	0.2	3
157	The Finkelshtain–Rosin effect in deformed f.c.c. steels. Journal of Alloys and Compounds, 2000, 310, 418-422.	2.8	3
158	Effect of severe plastic deformation on the structure and low-temperature internal friction of Fe3Al and (Fe,Cr)3Al. Physics of Metals and Metallography, 2008, 105, 36-44.	0.3	3
159	Influence of Heat Treatment on Magnetic and Damping Properties of Fe-11 at.% Al Alloys. Solid State Phenomena, 2008, 137, 129-136.	0.3	3
160	Study of martensitic transformation in the Fe-22 Mn-3 Si alloy by mechanical spectroscopy. Physics of Metals and Metallography, 2010, 109, 162-170.	0.3	3
161	Relaxation and hysteresis internal friction in ultra-fine-grained copper at temperatures of up to 400°C. Bulletin of the Russian Academy of Sciences: Physics, 2011, 75, 1290-1299.	0.1	3
162	Phase transitions in Fe-(23â^'24)Ga alloys: Experimental results and modeling. Journal of Alloys and Compounds, 2021, 885, 160917.	2.8	3

#	Article	IF	CITATIONS
163	The Study of Microplasticity Mechanism in Ti-50 wt.%Nb Alloy with High Hydrogen Content. European Physical Journal Special Topics, 1996, 06, C8-289-C8-292.	0.2	3
164	Coherent cluster ordering in Fe-xAl and Fe-xGa alloys. Journal of Alloys and Compounds, 2021, , 162540.	2.8	3
165	Deformation of Cu-Pd-P metallic glass under cyclic mechanical load on continous heating. Theoretical and Applied Fracture Mechanics, 2022, 118, 103262.	2.1	3
166	Kinetics of the isothermal A2 to sigma phase transformation in Fe-Cr alloy. Journal of Alloys and Compounds, 2022, 913, 165282.	2.8	3
167	Discussion of "interstitial precipitation in Fe-Cr-Al alloys― Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1995, 26, 1311-1312.	1.1	2
168	The Contribution of Dislocation - Impurities Interaction to Kinetics of Martensitic Transformation of Quenched f.c.c. Fe-Ni-Mo Alloys. European Physical Journal Special Topics, 1996, 06, C8-409-C8-412.	0.2	2
169	The Dislocation-Enhanced Finkelshtain-Rosin Effect (DEFRE) in Austenitic Steels. European Physical Journal Special Topics, 1996, 06, C8-143-C8-146.	0.2	2
170	Mechanisms of change of shape in deforming and heating titanium alloys with the shape memory effect. Metal Science and Heat Treatment, 1998, 40, 143-147.	0.2	2
171	Special Features of Static and Cyclic Deformation of Highly Porous Metallic Materials. Metal Science and Heat Treatment, 2002, 44, 202-210.	0.2	2
172	Tempering Peculiarities of Fe-C Alloy by Severe Plastic Deformation. , 2005, , 165-174.		2
173	H-induced anelasticity as a probe: Application to nanoscale quasicrystals. Journal of Alloys and Compounds, 2005, 404-406, 519-522.	2.8	2
174	Change of Structure and Properties of 51CrV4 Shaft Caused by Thermo-Mechanical Treatment. Solid State Phenomena, 0, 137, 169-180.	0.3	2
175	Mechanical spectroscopy study of thermo-mechanically treated 51CrV4 steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 521-522, 335-339.	2.6	2
176	Mechanical Spectroscopy of Ultrafine Grained Copper. Materials Science Forum, 2010, 667-669, 857-862.	0.3	2
177	Magnetic and magneto-mechanical properties of Fe 55 Co 19 Ga 26 alloy. Materials Letters, 2016, 182, 72-74.	1.3	2
178	PALS investigation of structural vacancies during phase transitions in Fe-27Ga and Fe-27Ga-0.1Tb alloys. AIP Conference Proceedings, 2019, , .	0.3	2
179	Mechanism of high magnetic field effect on the D03-L12 phase transition in Fe-Ga alloys. Journal of Alloys and Compounds, 2022, 919, 165818.	2.8	2
180	Influence of the temperature on the damping ability of high chromium ferritic steel. Metal Science and Heat Treatment, 1994, 36, 41-47.	0.2	1

#	Article	IF	CITATIONS
181	The influence of chemical composition and thermal treatments on the temperature-dependent internal friction of Fe—Ni alloys in the range of the phase transformation. Journal of Alloys and Compounds, 1994, 211-212, 194-197.	2.8	1
182	Investigation of deformation and damping mechanisms in Ti-50.6% Ni alloy. , 1996, 2779, 463.		1
183	From laboratory no. 2 of the USSR Academy of sciences to the Russian Science Center "Kurchatov Institute― Atomic Energy, 1999, 86, 243-253.	0.1	1
184	Mechanical Spectroscopy of the Formation of Quasicrystalline Order in Rapidly Quenched Ti- and Zr-based Alloys. Materials Research Society Symposia Proceedings, 2003, 805, 324.	0.1	1
185	Simulation of the X relaxation in FeAlMe (Me=Co, Cr, Mn, Si) alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 442, 133-137.	2.6	1
186	Effect of Heat Treatment on Acoustic Properties of Chromium Polycrystals at Low Temperatures. Solid State Phenomena, 2008, 137, 43-48.	0.3	1
187	Thermally Activated Relaxation and Hysteretic Internal Friction in Ultrafine Grained Copper. Defect and Diffusion Forum, 2011, 309-310, 209-214.	0.4	1
188	Effect of thermal cycling on martensitic γ↔ε-transformation in alloy Fe – 22% Mn – 3% Si. Metal Science and Heat Treatment, 2012, 54, 267-270.	0.2	1
189	Contribution of phase and structural transformations to linear and nonlinear mechanisms of anelasticity in binary Al-Mg alloys. Physics of Metals and Metallography, 2014, 115, 77-84.	0.3	1
190	Influence of substitution of Fe by Co on structural and magneto-mechanical properties of Fe-27Ga alloy. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2018, 236-237, 76-83.	1.7	1
191	Mechanical spectroscopy as an in situ tool to study anelasticity of martensitic transition in Fe-16Mn-8Cr-2Co alloy. Materials Letters, 2019, 256, 126635.	1.3	1
192	Isothermal and Athermal Transformation of FeNiMo Alloys. European Physical Journal Special Topics, 1995, 05, C8-305-C8-310.	0.2	1
193	The influence of microalloying and heat treatment on the structure and properties of Galfenol with high gallium concentration. Letters on Materials, 2019, 9, 51-57.	0.2	1
194	The Hydrogen Influence upon Oxygen Snoek Relaxation in Nb-Ti Alloys. European Physical Journal Special Topics, 1996, 06, C8-107-C8-110.	0.2	1
195	Investigation of the properties of corrosion-resistant superferritic. Metal Science and Heat Treatment, 1987, 29, 911-913.	0.2	0
196	The nature of temper brittleness of high-chromium ferrite. Strength of Materials, 1994, 26, 535-538.	0.2	0
197	Inelastic effects in ordering of Feâ~'Al alloys. Metal Science and Heat Treatment, 1998, 40, 134-139.	0.2	0
198	Inelasticity in isothermal martensite transformation. Metal Science and Heat Treatment, 1999, 41, 354-360.	0.2	0

#	Article	IF	CITATIONS
199	Relaxation Processes in Fe – Al Alloys. Metal Science and Heat Treatment, 2002, 44, 237-242.	0.2	0
200	Mechanical Spectroscopy of Quasicrystal Formation from Amorphous Ti- and Zr-based Alloys. , 2005, , 135-143.		0
201	Solid-Solid Phase Transformation of Amorphous Titanium Based Alloys. , 2005, , 144-151.		0
202	Study of Fe ₃ Al-Based Alloys by Internal Friction and ⁵⁹ Fe Radiotracer Diffusion Measurements. Defect and Diffusion Forum, 2005, 237-240, 1258-1263.	0.4	0
203	Damping caused by fatigue in porous 316L steel. Philosophical Magazine, 2006, 86, 2399-2406.	0.7	0
204	Functional gradation and its influence on damping behaviour of 51CrV4 steel. Materials Characterization, 2008, 59, 1178-1184.	1.9	0
205	Thermo-Mechanical Influence on the Internal Friction of a 51CrV4 Shaft. Chinese Physics Letters, 2012, 29, 114601.	1.3	0
206	A study of softening processes in heating of cold-deformed sheets of low-alloy aluminum alloys. Metal Science and Heat Treatment, 2012, 54, 253-258.	0.2	0
207	Boron interaction with D03 phase in Fe-(27–29)Ga alloys. Intermetallics, 2020, 126, 106938.	1.8	0
208	19th International Conference on Internal Friction and Mechanical Spectroscopy. Journal of Alloys and Compounds, 2021, 856, 157688.	2.8	0
209	Anelastic Relaxation Mechanisms of Internal Friction. Springer Series in Materials Science, 2007, , 11-119.	0.4	0
210	Interatomic Interaction and Alloying Criterion for Ferritic Alloys. , 1998, , 163-168.		0
211	Anelastic relaxation and structure of ternary Fe–Al–Me alloys with Me = Co, Cr, Ge, Mn, Nb, Si, Ta, Ti, Zr. International Journal of Materials Research, 2022, 97, 1078-1092.	0.1	0