Ariadna Recasens

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2664815/publications.pdf Version: 2024-02-01

ADIADNA RECASENS

#	Article	IF	CITATIONS
1	DYRK1A Negatively Regulates CDK5-SOX2 Pathway and Self-Renewal of Glioblastoma Stem Cells. International Journal of Molecular Sciences, 2021, 22, 4011.	4.1	12
2	Global phosphoproteomics reveals DYRK1A regulates CDK1 activity in glioblastoma cells. Cell Death Discovery, 2021, 7, 81.	4.7	31
3	MerTK activity is not necessary for the proliferation of glioblastoma stem cells. Biochemical Pharmacology, 2021, 186, 114437.	4.4	2
4	Identification of distinct pathological signatures induced by patient-derived α-synuclein structures in nonhuman primates. Science Advances, 2020, 6, eaaz9165.	10.3	34
5	MK2 Inhibition Induces p53-Dependent Senescence in Glioblastoma Cells. Cancers, 2020, 12, 654.	3.7	5
6	Lower Tubulin Expression in Glioblastoma Stem Cells Attenuates Efficacy of Microtubule-Targeting Agents. ACS Pharmacology and Translational Science, 2019, 2, 402-413.	4.9	14
7	Targeting Cancer Cell Dormancy. Trends in Pharmacological Sciences, 2019, 40, 128-141.	8.7	224
8	Abstract A064: MK2 inhibition stabilizes wild-type and mutated p53 in glioblastoma cells and leads to different cellular responses. , 2019, , .		0
9	Selective α-Synuclein Knockdown in Monoamine Neurons by Intranasal Oligonucleotide Delivery: Potential Therapy for Parkinson's Disease. Molecular Therapy, 2018, 26, 550-567.	8.2	97
10	In vivo models of alpha-synuclein transmission and propagation. Cell and Tissue Research, 2018, 373, 183-193.	2.9	51
11	Lack of pathogenic potential of peripheral α-synuclein aggregates from Parkinson's disease patients. Acta Neuropathologica Communications, 2018, 6, 8.	5.2	19
12	Role of microRNAs in the Regulation of $\hat{I}\pm$ -Synuclein Expression: A Systematic Review. Frontiers in Molecular Neuroscience, 2016, 9, 128.	2.9	38
13	BAX channel activity mediates lysosomal disruption linked to Parkinson disease. Autophagy, 2014, 10, 889-900.	9.1	74
14	Lewy body extracts from Parkinson disease brains trigger αâ€synuclein pathology and neurodegeneration in mice and monkeys. Annals of Neurology, 2014, 75, 351-362.	5.3	521
15	Alpha-synuclein spreading in Parkinsonââ,¬â,,¢s disease. Frontiers in Neuroanatomy, 2014, 8, 159.	1.7	148
16	Optic atrophy 1 mediates mitochondria remodeling and dopaminergic neurodegeneration linked to complex I deficiency. Cell Death and Differentiation, 2013, 20, 77-85.	11.2	78
17	Pathogenic Lysosomal Depletion in Parkinson's Disease. Journal of Neuroscience, 2010, 30, 12535-12544.	3.6	681