Rafael Abargues

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/26645/publications.pdf

Version: 2024-02-01

65 papers 1,455 citations

23 h-index 37 g-index

66 all docs 66 docs citations

66 times ranked 2643 citing authors

#	Article	IF	CITATIONS
1	Molecularly imprinted nanocomposites of CsPbBr ₃ nanocrystals: an approach towards fast and selective gas sensing of explosive taggants. Journal of Materials Chemistry C, 2022, 10, 1754-1766.	2.7	24
2	Self-Assembly of CsPbBr ₃ Perovskites in Micropatterned Polymeric Surfaces: Toward Luminescent Materials with Self-Cleaning Properties. ACS Applied Materials & Samp; Interfaces, 2022, 14, 20023-20031.	4.0	5
3	Luminescent CdSe Quantum Dot Arrays for Rapid Sensing of Explosive Taggants. ACS Applied Nano Materials, 2022, 5, 6717-6725.	2.4	10
4	Preparation and processing of nanocomposites of all-inorganic lead halide perovskite nanocrystals., 2021,, 19-93.		0
5	Enhanced optical response of InSe nanosheet devices decorated with CsPbX3 (XÂ=ÂI, Br) perovskite nanocrystals. Applied Surface Science, 2021, 536, 147939.	3.1	9
6	Molecularly Imprinted Silver Nanocomposites for Explosive Taggant Sensing. ACS Applied Polymer Materials, 2021, 3, 2960-2970.	2.0	17
7	Solution-Processed Ni-Based Nanocomposite Electrocatalysts: An Approach to Highly Efficient Electrochemical Water Splitting. ACS Applied Energy Materials, 2021, 4, 5255-5264.	2.5	16
8	Homogeneous and inhomogeneous broadening in single perovskite nanocrystals investigated by micro-photoluminescence. Journal of Luminescence, 2021, 240, 118453.	1.5	18
9	Ligand-Length Modification in CsPbBr3 Perovskite Nanocrystals and Bilayers with PbS Quantum Dots for Improved Photodetection Performance. Nanomaterials, 2020, 10, 1297.	1.9	19
10	Two-Dimensional Indium Selenide for Sulphur Vapour Sensing Applications. Nanomaterials, 2020, 10, 1396.	1.9	4
11	In Situ Synthesis of Conducting Polymers: A Novel Approach toward Polymer Thermoelectrics. Journal of Physical Chemistry C, 2020, 124, 22884-22892.	1.5	2
12	Au–NiO _x nanocomposite for hot electron-assisted plasmonic photocatalysis. Journal of Materials Chemistry C, 2020, 8, 9885-9897.	2.7	11
13	Enhancing the photocatalytic properties of PbS QD solids: the ligand exchange approach. Nanoscale, 2019, 11, 1978-1987.	2.8	56
14	Charge Transport in Trap-Sensitized Infrared PbS Quantum-Dot-Based Photoconductors: Pros and Cons. Nanomaterials, 2018, 8, 677.	1.9	23
15	Propagation length enhancement of surface plasmon polaritons in gold nano-/micro-waveguides by the interference with photonic modes in the surrounding active dielectrics. Nanophotonics, 2017, 6, 1109-1120.	2.9	19
16	In-situ synthesis of thiophene-based multifunctional polymeric networks with tunable conductivity and high photolithographic performance. Polymer, 2017, 108, 413-422.	1.8	8
17	Nanotexturing To Enhance Photoluminescent Response of Atomically Thin Indium Selenide with Highly Tunable Band Gap. Nano Letters, 2016, 16, 3221-3229.	4. 5	155
18	Strongly-coupled PbS QD solids by doctor blading for IR photodetection. RSC Advances, 2016, 6, 80201-80212.	1.7	25

#	Article	IF	Citations
19	An advance Towards the Synthesis of Ag Nanorod Arrays with Controlled Surface Roughness for SERS Substrates. Materials Today: Proceedings, 2016, 3, 294-302.	0.9	3
20	High spatial resolution mapping of individual and collective localized surface plasmon resonance modes of silver nanoparticle aggregates: correlation to optical measurements. Nanoscale Research Letters, 2015, 10, 1024.	3.1	12
21	MWP true time delay implemented in PbS-SU8 waveguides. , 2015, , .		0
22	UV-patternable nanocomposite containing CdSe and PbS quantum dots as miniaturized luminescent chemo-sensors. RSC Advances, 2015, 5, 19874-19883.	1.7	16
23	MWP phase shifters integrated in PbS-SU8 waveguides. Optics Express, 2015, 23, 14351.	1.7	11
24	Au–ZnO Nanocomposite Films for Plasmonic Photocatalysis. Advanced Materials Interfaces, 2015, 2, 1500156.	1.9	51
25	Polymer waveguide couplers based on metal nanoparticle–polymer nanocomposites. Nanotechnology, 2015, 26, 475201.	1.3	12
26	Photonic Crystalâ€Driven Spectral Concentration for Upconversion Photovoltaics. Advanced Optical Materials, 2015, 3, 568-574.	3.6	26
27	Efficient excitation of photoluminescence in a two-dimensional waveguide consisting of a quantum dot-polymer sandwich-type structure. Optics Letters, 2014, 39, 4962.	1.7	17
28	Plasmonic optical sensors printed from Ag–PVA nanoinks. Journal of Materials Chemistry C, 2014, 2, 908-915.	2.7	37
29	Colloidal Quantum Dots-PMMA Waveguides as Integrable Microwave Photonic Phase Shifters. IEEE Photonics Technology Letters, 2014, 26, 402-404.	1.3	10
30	Plasmonic versus catalytic effect of gold nanoparticles on mesoporous TiO2 electrodes for water splitting. Electrochimica Acta, 2014, 144, 64-70.	2.6	46
31	Photon plasmon coupling in nanocomposite plasmonic waveguides. , 2014, , .		1
32	Numerical and experimental investigation of short Au nanorods. , 2014, , .		0
33	Metasurfaces for colour printing. , 2014, , .		1
34	Quantum-Dot Double Layer Polymer Waveguides by Evanescent Light Coupling. Journal of Lightwave Technology, 2013, 31, 2515-2525.	2.7	25
35	The effect of quantum size confinement on the optical properties of PbSe nanocrystals as a function of temperature and hydrostatic pressure. Nanotechnology, 2013, 24, 205701.	1.3	37
36	Integrable microwave photonic phase-shifter based on Colloidal Quantum Dots-PMMA waveguide. , 2013, , .		0

#	Article	IF	CITATIONS
37	Laser ablation of a silicon target in chloroform: formation of multilayer graphite nanostructures. Journal Physics D: Applied Physics, 2013, 46, 135301.	1.3	12
38	Novel patternable and conducting metal-polymer nanocomposites: a step towards advanced mutlifunctional materials. , 2013, , .		1
39	Metal-polymer nanocomposite resist: a step towards in-situ nanopatterns metallization. Proceedings of SPIE, 2013, , .	0.8	4
40	Integrated microwave photonic phase-shifters based on colloidal quantum dots-PMMA nanocomposite waveguides. , 2013, , .		0
41	Light coupling from active polymer layers to hybrid dielectric-plasmonic waveguides. , 2013, , .		1
42	Photoconductivity and optical properties of silicon coated by thin TiO ₂ film <i>iin situ</i> doped by Au nanoparticles. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 687-694.	0.8	8
43	Dielectric and plasmonic waveguides based on quantum dots embedded in polymers. Optica Pura Y Aplicada, 2013, 46, 303-308.	0.0	0
44	Surface plasmon-polariton amplifiers. , 2012, , .		2
45	Plasmon dumping in Ag-nanoparticles/polymer composite for optical detection of amines and thiols vapors. , 2012, , .		3
46	Molecular-mediated assembly of silver nanoparticles with controlled interparticle spacing and chain length. Journal of Materials Chemistry, 2012, 22, 22204.	6.7	24
47	Polymer/QDs Nanocomposites for Waveguiding Applications. Journal of Nanomaterials, 2012, 2012, 1-9.	1.5	43
48	Patterning of Conducting Polymers Using UV Lithography: The in-Situ Polymerization Approach. Journal of Physical Chemistry C, 2012, 116, 17547-17553.	1.5	18
49	Temperature Sensor Based on Colloidal Quantum Dots–PMMA Nanocomposite Waveguides. IEEE Sensors Journal, 2012, 12, 3069-3074.	2.4	26
50	Colloidal QDs-polymer nanocomposites. Proceedings of SPIE, 2012, , .	0.8	0
51	DNA delivery to â€~ex vivo' human liver segments. Gene Therapy, 2012, 19, 504-512.	2.3	28
52	Understanding Acid Reaction and Diffusion in Chemically Amplified Photoresists: An Approach at the Molecular Level. Journal of Physical Chemistry C, 2011, 115, 20367-20374.	1.5	11
53	Photoluminescence waveguiding in CdSe and CdTe QDs–PMMA nanocomposite films. Nanotechnology, 2011, 22, 435202.	1.3	66
54	Photoswitchable bactericidal effects from novel silica-coated silver nanoparticles. Proceedings of SPIE, $2011, , .$	0.8	1

#	Article	IF	CITATIONS
55	Novel Method of Preparation of Goldâ€Nanoparticleâ€Doped TiO ₂ and SiO ₂ Plasmonic Thin Films: Optical Characterization and Comparison with Maxwell–Garnett Modeling. Advanced Functional Materials, 2011, 21, 3502-3507.	7.8	55
56	Au-PVA Nanocomposite Negative Resist for One-Step Three-Dimensional e-Beam Lithography. Langmuir, 2010, 26, 2825-2830.	1.6	35
57	Resist-based silver nanocomposites synthesized by lithographic methods. Microelectronic Engineering, 2010, 87, 1147-1149.	1.1	21
58	Laser-Ablation-Induced Synthesis of SiO ₂ -Capped Noble Metal Nanoparticles in a Single Step. Langmuir, 2010, 26, 7458-7463.	1.6	77
59	Ag and Au/DNQ-novolac nanocomposites patternable by ultraviolet lithography: a fast route to plasmonic sensor microfabrication. Journal of Materials Chemistry, 2010, 20, 7436.	6.7	34
60	Optical properties of different polymer thin films containing in situ synthesized Ag and Au nanoparticles. New Journal of Chemistry, 2009, 33, 1720.	1.4	39
61	Localized surface plasmon resonance sensor based on Ag-PVA nanocomposite thin films. Journal of Materials Chemistry, 2009, 19, 9233.	6.7	59
62	Scalable heterogeneous synthesis of metallic nanoparticles and aggregates with polyvinyl alcohol. New Journal of Chemistry, 2009, 33, 913.	1.4	37
63	A novel method of nanocrystal fabrication based on laser ablation in liquid environment. Superlattices and Microstructures, 2008, 43, 487-493.	1.4	37
64	Charge dissipation in e-beam lithography with Novolak-based conducting polymer films. Nanotechnology, 2008, 19, 125302.	1.3	12
65	High-resolution electron-beam patternable nanocomposite containing metal nanoparticles for plasmonics. Nanotechnology, 2008, 19, 355308.	1.3	75