Tatiana V Petrova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2664451/publications.pdf Version: 2024-02-01

Τατιανία V Ρετρουά

#	Article	IF	CITATIONS
1	Mechanosensitive ACKR4 scavenges CCR7 chemokines to facilitate TÂcell de-adhesion and passive transport by flow in inflamed afferent lymphatics. Cell Reports, 2022, 38, 110334.	2.9	10
2	Stem-cell-like TÂcells have a specific entry gate to the tumor. Cancer Cell, 2022, 40, 243-245.	7.7	4
3	Loss of vascular endothelial notch signaling promotes spontaneous formation of tertiary lymphoid structures. Nature Communications, 2022, 13, 2022.	5.8	16
4	The C5a-C5aR1 complement axis is essential for neutrophil recruitment to draining lymph nodes via high endothelial venules in cutaneous leishmaniasis. Cell Reports, 2022, 39, 110777.	2.9	7
5	Apelin-driven endothelial cell migration sustains intestinal progenitor cells and tumor growth. , 2022, 1, 476-490.		13
6	IFN-γ–dependent tumor-antigen cross-presentation by lymphatic endothelial cells promotes their killing by T cells and inhibits metastasis. Science Advances, 2022, 8, .	4.7	20
7	ADAMTS18+ villus tip telocytes maintain a polarized VEGFA signaling domain and fenestrations in nutrient-absorbing intestinal blood vessels. Nature Communications, 2022, 13, .	5.8	20
8	Development and aging of the lymphatic vascular system. Advanced Drug Delivery Reviews, 2021, 169, 63-78.	6.6	44
9	Transcription factor FOXP2 is a flowâ€induced regulator of collecting lymphatic vessels. EMBO Journal, 2021, 40, e107192.	3.5	14
10	Macrophage depletion induces edema through release of matrix-degrading proteases and proteoglycan deposition. Science Translational Medicine, 2021, 13, .	5.8	24
11	FOXC2 controls adult lymphatic endothelial specialization, function, and gut lymphatic barrier preventing multiorgan failure. Science Advances, 2021, 7, .	4.7	43
12	Soluble trivalent engagers redirect cytolytic TÂcell activity toward tumor endothelial marker 1. Cell Reports Medicine, 2021, 2, 100362.	3.3	9
13	The double life of TLR2. Science Signaling, 2021, 14, eabf4701.	1.6	1
14	Palmdelphin Regulates Nuclear Resilience to Mechanical Stress in the Endothelium. Circulation, 2021, 144, 1629-1645.	1.6	13
15	Lef1 restricts ectopic crypt formation and tumor cell growth in intestinal adenomas. Science Advances, 2021, 7, eabj0512.	4.7	6
16	Optimized lowâ€dose combinatorial drug treatment boosts selectivity and efficacy of colorectal carcinoma treatment. Molecular Oncology, 2020, 14, 2894-2919.	2.1	20
17	Biological functions of lymphatic vessels. Science, 2020, 369, .	6.0	220
18	Antiangiogenic immunotherapy suppresses desmoplastic and chemoresistant intestinal tumors in mice. Journal of Clinical Investigation, 2020, 130, 1199-1216.	3.9	35

#	Article	IF	CITATIONS
19	Shear stimulation of FOXC1 and FOXC2 differentially regulates cytoskeletal activity during lymphatic valve maturation. ELife, 2020, 9, .	2.8	43
20	Prediction of Occult Lymph Node Metastasis in Head and Neck Cancer with CD31 Vessel Quantification. Otolaryngology - Head and Neck Surgery, 2019, 160, 277-283.	1.1	13
21	Disrupting Myelin-Specific Th17 Cell Gut Homing Confers Protection in an Adoptive Transfer Experimental Autoimmune Encephalomyelitis. Cell Reports, 2019, 29, 378-390.e4.	2.9	51
22	Uncoupling protein 2 reprograms the tumor microenvironment to support the anti-tumor immune cycle. Nature Immunology, 2019, 20, 206-217.	7.0	51
23	Endothelial Calcineurin Signaling Restrains Metastatic Outgrowth by Regulating Bmp2. Cell Reports, 2019, 26, 1227-1241.e6.	2.9	15
24	Therapeutic Regeneration of Lymphatic and Immune Cell Functions upon Lympho-organoid Transplantation. Stem Cell Reports, 2019, 12, 1260-1268.	2.3	20
25	Expression of Prox1 in Medullary Thyroid Carcinoma Is Associated with Chromogranin A and Calcitonin Expression and with Ki67 Proliferative Index, but Not with Prognosis. Endocrine Pathology, 2019, 30, 138-145.	5.2	4
26	The NAD-Booster Nicotinamide Riboside Potently Stimulates Hematopoiesis through Increased Mitochondrial Clearance. Cell Stem Cell, 2019, 24, 405-418.e7.	5.2	143
27	Adrenomedullin Induces Cardiac Lymphangiogenesis After Myocardial Infarction and Regulates Cardiac Edema Via Connexin 43. Circulation Research, 2019, 124, 101-113.	2.0	86
28	Mouse model of postsurgical primary tumor recurrence and regional lymph node metastasis progression in <scp>HPV</scp> â€related head and neck cancer. International Journal of Cancer, 2018, 142, 2518-2528.	2.3	25
29	Organ-specific lymphatic vasculature: From development to pathophysiology. Journal of Experimental Medicine, 2018, 215, 35-49.	4.2	231
30	Characterization of Mouse Mesenteric Lymphatic Valve Structure and Function. Methods in Molecular Biology, 2018, 1846, 97-129.	0.4	18
31	Multiple roles of lymphatic vessels in peripheral lymph node development. Journal of Experimental Medicine, 2018, 215, 2760-2777.	4.2	85
32	Consensus guidelines for the use and interpretation of angiogenesis assays. Angiogenesis, 2018, 21, 425-532.	3.7	429
33	PROX1 is a transcriptional regulator of MMP14. Scientific Reports, 2018, 8, 9531.	1.6	26
34	Tannins from Syzygium guineense suppress Wnt signaling and proliferation of Wnt-dependent tumors through a direct effect on secreted Wnts. Cancer Letters, 2018, 435, 110-120.	3.2	35
35	Human venous valve disease caused by mutations in <i>FOXC2</i> and <i>CJC2</i> . Journal of Experimental Medicine, 2017, 214, 2437-2452.	4.2	29
36	Microenvironmental regulation of tumour angiogenesis. Nature Reviews Cancer, 2017, 17, 457-474.	12.8	1,299

#	Article	IF	CITATIONS
37	Intestinal lymphatic vasculature: structure, mechanisms and functions. Nature Reviews Gastroenterology and Hepatology, 2017, 14, 510-526.	8.2	163
38	Correlation between podoplanin expression and extracapsular spread in squamous cell carcinoma of the oral cavity using subjective immunoreactivity scores and semiquantitative image analysis. Head and Neck, 2017, 39, 98-108.	0.9	15
39	All TIEd up: mechanisms of Schlemm's canal maintenance. Journal of Clinical Investigation, 2017, 127, 3594-3597.	3.9	10
40	Cx47 fine-tunes the handling of serum lipids but is dispensable for lymphatic vascular function. PLoS ONE, 2017, 12, e0181476.	1.1	17
41	Endothelial Cell Responses to Biomechanical Forces in Lymphatic Vessels. Antioxidants and Redox Signaling, 2016, 25, 451-465.	2.5	43
42	High-resolution 3D analysis of mouse small-intestinal stroma. Nature Protocols, 2016, 11, 1617-1629.	5.5	60
43	Dielectric elastomer actuator for mechanical loading of 2D cell cultures. Lab on A Chip, 2016, 16, 3788-3794.	3.1	47
44	The transcription factor Prox1 is essential for satellite cell differentiation and muscle fibre-type regulation. Nature Communications, 2016, 7, 13124.	5.8	62
45	Stability and function of adult vasculature is sustained by Akt/Jagged1 signalling axis in endothelium. Nature Communications, 2016, 7, 10960.	5.8	77
46	Prediction of occult lymph node metastasis in squamous cell carcinoma of the oral cavity and the oropharynx using peritumoral Prospero homeobox protein 1 lymphatic nuclear quantification. Head and Neck, 2016, 38, 1407-1415.	0.9	6
47	Cdk5 controls lymphatic vessel development and function by phosphorylation of Foxc2. Nature Communications, 2015, 6, 7274.	5.8	42
48	Meet Me in the Middle. Circulation Research, 2015, 116, 1630-1632.	2.0	8
49	STING activation of tumor endothelial cells initiates spontaneous and therapeutic antitumor immunity. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15408-15413.	3.3	404
50	GATA2 is required for lymphatic vessel valve development and maintenance. Journal of Clinical Investigation, 2015, 125, 2979-2994.	3.9	177
51	FOXC2 and fluid shear stress stabilize postnatal lymphatic vasculature. Journal of Clinical Investigation, 2015, 125, 3861-3877.	3.9	186
52	DLL4 promotes continuous adult intestinal lacteal regeneration and dietary fat transport. Journal of Clinical Investigation, 2015, 125, 4572-4586.	3.9	145
53	Abstract 18661: Regulation of Lymphatic Physiology by Connexin47. Circulation, 2015, 132, .	1.6	0
54	PROX1 Promotes Metabolic Adaptation and Fuels Outgrowth of Wnt high Metastatic Colon Cancer Cells. Cell Reports, 2014, 8, 1957-1973.	2.9	66

#	Article	IF	CITATIONS
55	Angiopoietin 2 regulates the transformation and integrity of lymphatic endothelial cell junctions. Genes and Development, 2014, 28, 1592-1603.	2.7	115
56	Pkd1 Regulates Lymphatic Vascular Morphogenesis during Development. Cell Reports, 2014, 7, 623-633.	2.9	77
57	Connexins in lymphatic vessel physiology and disease. FEBS Letters, 2014, 588, 1271-1277.	1.3	37
58	Interplay of Mechanotransduction, FOXC2, Connexins, and Calcineurin Signaling in Lymphatic Valve Formation. Advances in Anatomy, Embryology and Cell Biology, 2014, 214, 67-80.	1.0	32
59	Phosphorylation Regulates FOXC2-Mediated Transcription in Lymphatic Endothelial Cells. Molecular and Cellular Biology, 2013, 33, 3749-3761.	1.1	48
60	Mechanotransduction, PROX1, and FOXC2 Cooperate to Control Connexin37 and Calcineurin during Lymphatic-Valve Formation. Developmental Cell, 2012, 22, 430-445.	3.1	339
61	An Unexpected Role of Semaphorin3A–Neuropilin-1 Signaling in Lymphatic Vessel Maturation and Valve Formation. Circulation Research, 2012, 111, 426-436.	2.0	129
62	Lymphatic vascular morphogenesis in development, physiology, and disease. Journal of Cell Biology, 2011, 193, 607-618.	2.3	344
63	Liprin β1 is highly expressed in lymphatic vasculature and is important for lymphatic vessel integrity. Blood, 2010, 115, 906-909.	0.6	44
64	FOXC2 controls formation and maturation of lymphatic collecting vessels through cooperation with NFATc1. Journal of Cell Biology, 2009, 185, 439-457.	2.3	295
65	Organâ€specific lymphangiectasia, arrested lymphatic sprouting, and maturation defects resulting from geneâ€ŧargeting of the PI3K regulatory isoforms p85α, p55α, and p50α. Developmental Dynamics, 2009, 238, 2670-2679.	0.8	54
66	Developmental and pathological lymphangiogenesis: from models to human disease. Histochemistry and Cell Biology, 2008, 130, 1063-1078.	0.8	95
67	Transcription Factor PROX1 Induces Colon Cancer Progression by Promoting the Transition from Benign to Highly Dysplastic Phenotype. Cancer Cell, 2008, 13, 407-419.	7.7	166
68	Therapeutic differentiation and maturation of lymphatic vessels after lymph node dissection and transplantation. Nature Medicine, 2007, 13, 1458-1466.	15.2	321
69	Molecular lymphangiogenesis: new players. Trends in Cell Biology, 2005, 15, 434-441.	3.6	118
70	Pathogenesis of persistent lymphatic vessel hyperplasia in chronic airway inflammation. Journal of Clinical Investigation, 2005, 115, 247-257.	3.9	475
71	Pathogenesis of persistent lymphatic vessel hyperplasia in chronic airway inflammation. Journal of Clinical Investigation, 2005, 115, 247-257.	3.9	326
72	Lymphatic Neoangiogenesis in Human Kidney Transplants Is Associated with Immunologically Active Lymphocytic Infiltrates. Journal of the American Society of Nephrology: JASN, 2004, 15, 603-612.	3.0	427

#	Article	IF	CITATION
73	Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nature Immunology, 2004, 5, 74-80.	7.0	1,208
74	Defective valves and abnormal mural cell recruitment underlie lymphatic vascular failure in lymphedema distichiasis. Nature Medicine, 2004, 10, 974-981.	15.2	515
75	Molecular Regulation of Lymphangiogenesis. Annals of the New York Academy of Sciences, 2004, 1014, 76-87.	1.8	33
76	A fluorescent Tie1 reporter allows monitoring of vascular development and endothelial cell isolation from transgenic mouse embryos. FASEB Journal, 2002, 16, 1764-1774.	0.2	49
77	Lymphatic endothelial reprogramming of vascular endothelial cells by the Prox-1 homeobox transcription factor. EMBO Journal, 2002, 21, 4593-4599.	3.5	544
78	Signalling via vascular endothelial growth factor receptor-3 is sufficient for lymphangiogenesis in transgenic mice. EMBO Journal, 2001, 20, 1223-1231.	3.5	583
79	Vascular endothelial growth factor receptors in the regulation of angiogenesis and lymphangiogenesis. Oncogene, 2000, 19, 5598-5605.	2.6	374