Sandro R Almeida

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2663748/publications.pdf

Version: 2024-02-01

172207 168136 3,209 87 29 citations h-index papers

g-index 89 89 89 3611 docs citations times ranked citing authors all docs

53

#	Article	IF	Citations
1	Two physically, functionally, and developmentally distinct peritoneal macrophage subsets. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 2568-2573.	3.3	564
2	Restoration of Pattern Recognition Receptor Costimulation to Treat Chromoblastomycosis, a Chronic Fungal Infection of the Skin. Cell Host and Microbe, 2011, 9, 436-443.	5.1	146
3	Comparative genomics of the major fungal agents of human and animal Sporotrichosis: Sporothrix schenckii and Sporothrix brasiliensis. BMC Genomics, 2014, 15, 943.	1.2	121
4	Mouse B-1 cell-derived mononuclear phagocyte, a novel cellular component of acute non-specific inflammatory exudate. International Immunology, 2001, 13, 1193-1201.	1.8	110
5	Differences in Cell Morphometry, Cell Wall Topography and Gp70 Expression Correlate with the Virulence of Sporothrix brasiliensis Clinical Isolates. PLoS ONE, 2013, 8, e75656.	1.1	90
6	Alkaline pH Promotes NADPH Oxidase-Independent Neutrophil Extracellular Trap Formation: A Matter of Mitochondrial Reactive Oxygen Species Generation and Citrullination and Cleavage of Histone. Frontiers in Immunology, 2018, 8, 1849.	2.2	90
7	Passive immunization with monoclonal antibody against a 70â€kDa putative adhesin of <i>Sporothrix schenckii</i> induces protection in murine sporotrichosis. European Journal of Immunology, 2008, 38, 3080-3089.	1.6	89
8	Extracellular Vesicles From Sporothrix brasiliensis Are an Important Virulence Factor That Induce an Increase in Fungal Burden in Experimental Sporotrichosis. Frontiers in Microbiology, 2018, 9, 2286.	1.5	84
9	Immunology of Dermatophytosis. Mycopathologia, 2008, 166, 277-283.	1.3	82
10	Characterization of gp70 and Anti-gp70 Monoclonal Antibodies in Paracoccidioides brasiliensis Pathogenesis. Infection and Immunity, 2003, 71, 6534-6542.	1.0	77
11	Cytokines and lymphocyte proliferation in patients with different clinical forms of chromoblastomycosis. Microbes and Infection, 2005, 7, 708-713.	1.0	74
12	Immunoproteomic analysis reveals a convergent humoral response signature in the Sporothrix schenckii complex. Journal of Proteomics, 2015, 115, 8-22.	1.2	74
13	Stimulation, inhibition and death of macrophages infected with Trichophyton rubrum. Microbes and Infection, 2006, 8, 372-379.	1.0	66
14	Interaction between <i>Paracoccidioides brasiliensis</i> Interleukinâ€10 Production and Tollâ€ike Receptorâ€"2 Expression: Possible Mechanisms of Susceptibility. Journal of Infectious Diseases, 2007, 196, 1108-1115.	1.9	65
15	Humoral immune response against soluble and fractionate antigens in experimental sporotrichosis. FEMS Immunology and Medical Microbiology, 2005, 43, 241-247.	2.7	63
16	Prophylactic and Therapeutic Vaccination Using Dendritic Cells Primed with Peptide 10 Derived from the 43-Kilodalton Glycoprotein of Paracoccidioides brasiliensis. Vaccine Journal, 2012, 19, 23-29.	3.2	58
17	Cell surface expression of adhesins for fibronectin correlates with virulence in Sporothrix schenckii. Microbiology (United Kingdom), 2009, 155, 3730-3738.	0.7	57
18	Intracellular localization of myeloperoxidase in murine peritoneal B-lymphocytes and macrophages. Cellular Immunology, 2013, 281, 27-30.	1.4	50

#	Article	IF	CITATIONS
19	Structure, Cellular Distribution, Antigenicity, and Biological Functions of Fonsecaea pedrosoi Ceramide Monohexosides. Infection and Immunity, 2005, 73, 7860-7868.	1.0	49
20	Therapeutic vaccine using a monoclonal antibody against a 70-kDa glycoprotein in mice infected with highly virulent Sporothrix schenckii and Sporothrix brasiliensis. Medical Mycology, 2015, 53, 42-50.	0.3	47
21	Nitric oxide-dependent killing of Cryptococcus neoformans by B-1-derived mononuclear phagocyte. Journal of Leukocyte Biology, 2006, 80, 36-44.	1.5	46
22	An immunoproteomic approach revealing peptides from Sporothrix brasiliensis that induce a cellular immune response in subcutaneous sporotrichosis. Scientific Reports, 2018, 8, 4192.	1.6	45
23	Involvement of a 1-Cys Peroxiredoxin in Bacterial Virulence. PLoS Pathogens, 2014, 10, e1004442.	2.1	44
24	Pattern of Immune Response to GP43 fromParacoccidioides brasiliensisin Susceptible and Resistant Mice Is Influenced by Antigen-Presenting Cells. Cellular Immunology, 1998, 190, 68-76.	1.4	41
25	Phagocytosis, Production of Nitric Oxide and Pro-inflammatory Cytokines by Macrophages in the Presence of Dematiaceus Fungi that Causes Chromoblastomycosis. Scandinavian Journal of Immunology, 2006, 64, 382-387.	1.3	40
26	Absence of CD4+T Cells Impairs Host Defence of Mice Infected with Fonsecaea pedrosoi. Scandinavian Journal of Immunology, 2006, 64, 595-600.	1.3	35
27	Involvement of the major glycoprotein (gp43) ofParacoccidioides brasiliensisin attachment to macrophages. Medical Mycology, 1998, 36, 405-411.	0.3	34
28	Antibodies Against <i>Sporothrix schenckii</i> Enhance TNFâ€Î± Production and Killing by Macrophages. Scandinavian Journal of Immunology, 2012, 75, 142-146.	1.3	32
29	Regulation of T Helper Cell Differentiation In Vivo by GP43 from Paracoccidioides brasiliensis Provided by Different Antigen-Presenting Cells. Scandinavian Journal of Immunology, 2003, 58, 290-297.	1.3	31
30	Comparative Genomics of Sibling Species of Fonsecaea Associated with Human Chromoblastomycosis. Frontiers in Microbiology, 2017, 8, 1924.	1.5	31
31	Therapeutic monoclonal antibody for sporotrichosis. Frontiers in Microbiology, 2012, 3, 409.	1.5	30
32	Proteins Potentially Involved in Immune Evasion Strategies in Sporothrix brasiliensis Elucidated by Ultra-High-Resolution Mass Spectrometry. MSphere, 2018, 3, .	1.3	30
33	Down-regulation of dendritic cell activation induced by Paracoccidioides brasiliensis. Immunology Letters, 2004, 94, 107-114.	1.1	29
34	The impact of the absence of Toll-like receptor-2 during Sporothrix brasiliensis infection. Journal of Medical Microbiology, 2019, 68, 87-94.	0.7	28
35	Granuloma formation in vitro requires B-1 cells and is modulated by Paracoccidioides brasiliensis gp43 antigen. Microbes and Infection, 2006, 8, 589-597.	1.0	27
36	Dectin-1 and Dectin-2 promote control of the fungal pathogen <i>Trichophyton rubrum </i> independently of IL-17 and adaptive immunity in experimental deep dermatophytosis. Innate Immunity, 2016, 22, 316-324.	1.1	27

3

#	Article	IF	CITATIONS
37	<i>Fonsecaea pedrosoi</i> infection induces differential modulation of costimulatory molecules and cytokines in monocytes from patients with severe and mild forms of chromoblastomycosis. Journal of Leukocyte Biology, 2008, 84, 864-870.	1.5	25
38	The importance of Toll-like receptor 4 during experimental <i>Sporothrix brasiliensis </i> infection. Medical Mycology, 2019, 57, 489-495.	0.3	25
39	Characterization of B-1b cells as antigen presenting cells in the immune response to gp43 from Paracoccidioides brasiliensis in vitro. Immunology Letters, 2002, 83, 61-66.	1.1	24
40	Immunization of susceptible mice with gp43-pulsed dendritic cells induce an increase of pulmonary Paracoccidioidomycosis. Immunology Letters, 2006, 103, 121-126.	1.1	24
41	B-1 cells are pivotal for in vivo inflammatory giant cell formation. International Journal of Experimental Pathology, 2005, 86, 257-265.	0.6	23
42	IL-1 signaling inhibits <i>Trichophyton rubrum </i> conidia development and modulates the IL-17 response in vivo. Virulence, 2015, 6, 449-457.	1.8	23
43	The low efficiency of dendritic cells and macrophages from mice susceptible to Paracoccidioides brasiliensis in inducing a Th1 response. Brazilian Journal of Medical and Biological Research, 2001, 34, 529-537.	0.7	21
44	Murine Dendritic Cells Transcriptional Modulation upon Paracoccidioides brasiliensis Infection. PLoS Neglected Tropical Diseases, 2012, 6, e1459.	1.3	21
45	Monocyte-Derived Dendritic Cells from Patients with Dermatophytosis Restrict the Growth of Trichophyton rubrum and Induce CD4-T Cell Activation. PLoS ONE, 2014, 9, e110879.	1.1	21
46	Silencing of OCH1 unveils the role of Sporothrix schenckii N -linked glycans during the host–fungus interaction. Infection and Drug Resistance, 2019, Volume 12, 67-85.	1.1	20
47	A Model for Trans-Kingdom Pathogenicity in Fonsecaea Agents of Human Chromoblastomycosis. Frontiers in Microbiology, 2018, 9, 2211.	1.5	20
48	Cellular immune response of patients with chromoblastomycosis undergoing antifungal therapy. Mycopathologia, 2006, 162, 97-101.	1.3	19
49	The Efficacy of Humanized Antibody against the Sporothrix Antigen, gp70, in Promoting Phagocytosis and Reducing Disease Burden. Frontiers in Microbiology, 2017, 8, 345.	1.5	19
50	The use of glucan as immunostimulant in the treatment of a severe case of chromoblastomycosis. Mycoses, 2008, 51, 341-344.	1.8	18
51	Paracoccidioides brasilinsis-Induced Migration of Dendritic Cells and Subsequent T-Cell Activation in the Lung-Draining Lymph Nodes. PLoS ONE, 2011, 6, e19690.	1.1	18
52	B-1 cells modulate oral tolerance in mice. Immunology Letters, 2009, 124, 63-69.	1.1	17
53	Fermented or unfermented milk using Bifidobacterium animalis subsp. lactis HN019: Technological approach determines the probiotic modulation of mucosal cellular immunity. Food Research International, 2014, 64, 283-288.	2.9	17
54	Immunostimulatory DNA from Paracoccidioides brasiliensis Acts as T-Helper 1 Promoter in Susceptible Mice. Scandinavian Journal of Immunology, 2001, 54, 348-356.	1.3	15

#	Article	IF	Citations
55	Therapeutic treatment with scFv–PLGA nanoparticles decreases pulmonary fungal load in a murine model of paracoccidioidomycosis. Microbes and Infection, 2018, 20, 48-56.	1.0	14
56	Analysis of some immunogenic properties of the recombinant <i>Sporothrix schenckii</i> Gp70 expressed in <i>Escherichia coli</i> Future Microbiology, 2019, 14, 397-410.	1.0	13
57	The Atypical Response Regulator AtvR Is a New Player in Pseudomonas aeruginosa Response to Hypoxia and Virulence. Infection and Immunity, 2017, 85, .	1.0	12
58	Intracellular PRRs Activation in Targeting the Immune Response Against Fungal Infections. Frontiers in Cellular and Infection Microbiology, 2020, 10, 591970.	1.8	12
59	B and T cell responses elicited by monoclonal anti-idiotypic antibody (Ab $2\hat{l}^2$) mimicking gp43 from Paracoccidioides brasiliensis. Clinical and Experimental Immunology, 2004, 137, 123-128.	1.1	11
60	The Role of Phagocytes and NETs in Dermatophytosis. Mycopathologia, 2017, 182, 263-272.	1.3	11
61	Fonsecaeapedrosoi Conidia and Hyphae Activate Neutrophils Distinctly: Requirement of TLR-2 and TLR-4 in Neutrophil Effector Functions. Frontiers in Immunology, 2020, 11, 540064.	2.2	11
62	TLR3 Is a Negative Regulator of Immune Responses Against Paracoccidioides brasiliensis. Frontiers in Cellular and Infection Microbiology, 2018, 8, 426.	1.8	10
63	In vivo hydroquinone exposure impairs allergic lung inflammation in rats. Toxicology, 2007, 241, 47-57.	2.0	9
64	Recognition of enteroinvasive Escherichia coli and Shigella flexneri by dendritic cells: distinct dendritic cell activation states. Memorias Do Instituto Oswaldo Cruz, 2012, 107, 138-141.	0.8	9
65	Two-dimensional gel electrophoresis data for proteomic profiling of Sporothrix yeast cells. Data in Brief, 2015, 2, 32-38.	0.5	9
66	Dendritic Cells Transfected with scFv from Mab 7.B12 Mimicking Original Antigen gp43 Induces Protection against Experimental Paracoccidioidomycosis. PLoS ONE, 2011, 6, e15935.	1.1	9
67	Infection with Paracoccidioides brasiliensis induces B-1 cell migration and activation of regulatory T cells. Microbes and Infection, 2016, 18, 798-803.	1.0	8
68	The Critical Role of Notch1–TLR 4 Signaling in the Inflammatory and Fungicidal Activity of Macrophages Against Paracoccidioides brasiliensis Strain Pb18. Mycopathologia, 2017, 182, 797-807.	1.3	8
69	An In Vitro Model for the Study of the Macrophage Response Upon Trichophyton rubrum Challenge. Mycopathologia, 2017, 182, 241-250.	1.3	8
70	Monocyte-derived dendritic cells from patients with severe forms of chromoblastomycosis induce CD4+ T cell activation <i>in vitro</i> . Clinical and Experimental Immunology, 2009, 156, 117-125.	1.1	7
71	Immune Sensing and Potential Immunotherapeutic Approaches to Control Chromoblastomycosis. Journal of Fungi (Basel, Switzerland), 2021, 7, 3.	1.5	7
72	Immunoproteomic and Immunopeptidomic Analyses of Histoplasma capsulatum Reveal Promiscuous and Conserved Epitopes Among Fungi With Vaccine Potential. Frontiers in Immunology, 2021, 12, 764501.	2.2	7

#	Article	IF	CITATIONS
73	Subcutaneous infection of mice with Paracoccidiodes brasiliensis induces a peculiar pattern of inflammatory and immune responses. Mycopathologia, 1999, 145, 7-14.	1.3	6
74	Modulation of proliferation, differentiation and cytokine secretion of murine B-1b cells by proteins of the extracellular matrix. Immunology Letters, 2003, 86, 15-21.	1.1	6
75	Adjuvant Effect of Synthetic Oligodeoxyribonucleotides (CpG-ODN) From the Paracoccidioides brasiliensis gp43 gene on the Th2-Th1 Immunomodulation of Experimental Paracoccidioidomycosis Scandinavian Journal of Immunology, 2005, 62, 325-333.	1.3	6
76	Notch Signaling is Required for Dendritic Cell Maturation and T Cell Expansion in Paracoccidioidomycosis. Mycopathologia, 2018, 183, 739-749.	1.3	6
77	scFv from Antibody That Mimics gp43 Modulates the Cellular and Humoral Immune Responses during Experimental Paracoccidioidomycosis. PLoS ONE, 2015, 10, e0129401.	1.1	6
78	Advances in Vaccine Development Against Sporotrichosis. Current Tropical Medicine Reports, 2019, 6, 126-131.	1.6	4
79	Peptidorhamnomannan from Lomentospora prolificans modulates the inflammatory response in macrophages infected with Candida albicans. BMC Microbiology, 2020, 20, 245.	1.3	4
80	Special issue on sporotrichosis: challenges to deal with the new emerging pathogenic species. Brazilian Journal of Microbiology, 2021, 52, 1-3.	0.8	4
81	Fonsecaea pedrosoi Conidia Induces Activation of Dendritic Cells and Increases CD11c+ Cells in Regional Lymph Nodes During Experimental Chromoblastomycosis. Mycopathologia, 2020, 185, 245-256.	1.3	3
82	Insulin Modulates Paracoccidioides brasiliensis-Induced Inflammation by Restoring the Populations of NK Cells, Dendritic Cells, and B Lymphocytes in Lungs. Journal of Diabetes Research, 2018, 2018, 1-11.	1.0	2
83	Extracellular Vesicles From Sporothrix brasiliensis Yeast Cells Increases Fungicidal Activity in Macrophages. Mycopathologia, 2021, 186, 807-818.	1.3	2
84	Insulin Modulates Inflammatory Cytokine Release in Acute Stages and Augments Expression of Adhesion Molecules and Leukocytes in Lungs on Chronic Stages of Paracoccidioidomycosis. Frontiers in Immunology, 2020, 11, 583385.	2.2	1
85	Monocyte-Derived Dendritic Cells Can Revert In Vitro Antigen-Specific Cellular Anergy in Active Human Paracoccidioidomycosis. Journal of Fungi (Basel, Switzerland), 2021, 7, 201.	1.5	1
86	Roles of Ohr (a Cys based peroxidase) and OhrR (a redox regulated transcription factor) from Pseudomonas aeruginosa in a mouse infection model. Free Radical Biology and Medicine, 2018, 128, S106-S107.	1.3	0
87	Neutrophil-suppressive activity over T-cell proliferation and fungal clearance in a murine model of Fonsecaea pedrosoi infection. Scientific Reports, 2021, 11, 20220.	1.6	0