## Ana Lleo

# List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2663564/ana-lleo-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

134 6,499 44 78 g-index

167 8,137 7.1 5.6 ext. papers ext. citations avg, IF L-index

| #   | Paper                                                                                                                                                                                                                            | IF               | Citations |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------|
| 134 | High prevalence of porto-sinusoidal vascular disease in patients with constantly elevated gamma-glutamyl transferase levels <i>Liver International</i> , <b>2022</b> ,                                                           | 7.9              |           |
| 133 | Osteosarcopenia in autoimmune cholestatic liver diseases: Causes, management, and challenges <i>World Journal of Gastroenterology</i> , <b>2022</b> , 28, 1430-1443                                                              | 5.6              |           |
| 132 | Versatile Mass Spectrometry-Based Intraoperative Diagnosis of Liver Tumor in a Multiethnic Cohort. <i>Applied Sciences (Switzerland)</i> , <b>2022</b> , 12, 4244                                                                | 2.6              | 1         |
| 131 | Dose-Dependent Impairment of the Immune Response to the Moderna-1273 mRNA Vaccine by Mycophenolate Mofetil in Patients with Rheumatic and Autoimmune Liver Diseases. <i>Vaccines</i> , <b>2022</b> , 10, 801                     | 5.3              | 2         |
| 130 | Cholangiocarcinoma landscape in Europe: diagnostic, prognostic and therapeutic insights from the ENSCCA Registry <i>Journal of Hepatology</i> , <b>2021</b> ,                                                                    | 13.4             | 10        |
| 129 | Small and Large Bile Ducts Intrahepatic Cholangiocarcinoma Classification: A Preliminary Feature-Based Study. <i>Lecture Notes in Computer Science</i> , <b>2021</b> , 237-244                                                   | 0.9              |           |
| 128 | Clinical Outcomes in the Second versus First Pandemic Wave in Italy: Impact of Hospital Changes and Reorganization. <i>Applied Sciences (Switzerland)</i> , <b>2021</b> , 11, 9342                                               | 2.6              | O         |
| 127 | Real-world experience with obeticholic acid in patients with primary biliary cholangitis. <i>JHEP Reports</i> , <b>2021</b> , 3, 100248                                                                                          | 10.3             | 10        |
| 126 | Experimental liver models: From cell culture techniques to microfluidic organs-on-chip. <i>Liver International</i> , <b>2021</b> , 41, 1744-1761                                                                                 | 7.9              | 4         |
| 125 | Directly acting antivirals are safe and effective in HCV positive patients aged 80 years and older: a multicenter real-life study. <i>Expert Opinion on Drug Safety</i> , <b>2021</b> , 20, 839-843                              | 4.1              | 1         |
| 124 | High prevalence of multidrug-resistant bacteria in patients with pyogenic liver abscess following liver cancer loco-regional treatments. <i>Liver International</i> , <b>2021</b> , 41, 1909-1912                                | 7.9              | O         |
| 123 | Letter to the Editor: Are We Confident That Primary Biliary Cholangitis Liver-Related Mortality Is Higher in Males?. <i>Hepatology</i> , <b>2021</b> , 74, 2307                                                                  | 11.2             | 1         |
| 122 | What gastroenterologists should know about SARS-CoV 2 vaccine: World Endoscopy Organization perspective. <i>United European Gastroenterology Journal</i> , <b>2021</b> , 9, 787                                                  | 5.3              | 1         |
| 121 | X Chromosome Contribution to the Genetic Architecture of Primary Biliary Cholangitis. <i>Gastroenterology</i> , <b>2021</b> , 160, 2483-2495.e26                                                                                 | 13.3             | 9         |
| 120 | High rates of sustained virological response despite premature discontinuation of directly acting antivirals in HCV-infected patients treated in a real-life setting. <i>Journal of Viral Hepatitis</i> , <b>2021</b> , 28, 558- | -5 <del>68</del> | O         |
| 119 | Pembrolizumab-Induced Vanishing Bile Duct Syndrome: a Case Report. <i>SN Comprehensive Clinical Medicine</i> , <b>2021</b> , 3, 906-908                                                                                          | 2.7              | 2         |
| 118 | An international genome-wide meta-analysis of primary biliary cholangitis: Novel risk loci and candidate drugs. <i>Journal of Hepatology</i> , <b>2021</b> , 75, 572-581                                                         | 13.4             | 8         |

## (2020-2021)

| 117 | Antimitochondrial Antibodies: from Bench to Bedside. <i>Clinical Reviews in Allergy and Immunology</i> , <b>2021</b> , 1                                                                                                                                    | 12.3 | 3   |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|
| 116 | Primary biliary cholangitis. <i>Lancet, The</i> , <b>2020</b> , 396, 1915-1926                                                                                                                                                                              | 40   | 33  |
| 115 | High mortality in COVID-19 patients with mild respiratory disease. <i>European Journal of Clinical Investigation</i> , <b>2020</b> , 50, e13314                                                                                                             | 4.6  | 21  |
| 114 | Genomewide Association Study of Severe Covid-19 with Respiratory Failure. <i>New England Journal of Medicine</i> , <b>2020</b> , 383, 1522-1534                                                                                                             | 59.2 | 913 |
| 113 | Goals of Treatment for Improved Survival in Primary Biliary Cholangitis: Treatment Target Should Be Bilirubin Within the Normal Range and Normalization of Alkaline Phosphatase. <i>American Journal of Gastroenterology</i> , <b>2020</b> , 115, 1066-1074 | 0.7  | 31  |
| 112 | Interleukin-6 receptor blocking with intravenous tocilizumab in COVID-19 severe acute respiratory distress syndrome: A retrospective case-control survival analysis of 128 patients. <i>Journal of Autoimmunity</i> , <b>2020</b> , 114, 102511             | 15.5 | 53  |
| 111 | Impact of RAS mutations on the immune infiltrate of colorectal liver metastases: A preliminary study. <i>Journal of Leukocyte Biology</i> , <b>2020</b> , 108, 715-721                                                                                      | 6.5  | 6   |
| 110 | Postsustained Virological Response Management in Hepatitis C Patients. <i>Seminars in Liver Disease</i> , <b>2020</b> , 40, 233-239                                                                                                                         | 7.3  | 4   |
| 109 | Intrahepatic cholangiocellular carcinoma with radiological enhancement patterns mimicking hepatocellular carcinoma. <i>Updates in Surgery</i> , <b>2020</b> , 72, 413-421                                                                                   | 2.9  | 3   |
| 108 | Identifying medical professionals at risk for in-hospital COVID-19 infection: a snapshot during a "tsunami" highlighting unexpected risks. <i>Global Health &amp; Medicine</i> , <b>2020</b> , 2, 235-239                                                   | 2.4  | 1   |
| 107 | Tumor microenvironment in primary liver tumors: A challenging role of natural killer cells. <i>World Journal of Gastroenterology</i> , <b>2020</b> , 26, 4900-4918                                                                                          | 5.6  | 10  |
| 106 | Simplified care-pathway selection for nonspecialist practice: the GLOBAL Primary Biliary Cholangitis Study Group Age, Bilirubin, Alkaline phosphatase risk assessment tool. <i>European Journal of Gastroenterology and Hepatology</i> , <b>2020</b> , 33,  | 2.2  | 1   |
| 105 | Is the outcome after hepatectomy for transitional hepatocholangiocarcinoma different from that of hepatocellular carcinoma and mass-forming cholangiocarcinoma? A case-matched analysis. <i>Updates in Surgery</i> , <b>2020</b> , 72, 671-679              | 2.9  | 4   |
| 104 | COVID-19 Digestive System Involvement and Clinical Outcomes in a Large Academic Hospital in Milan, Italy. <i>Clinical Gastroenterology and Hepatology</i> , <b>2020</b> , 18, 2366-2368.e3                                                                  | 6.9  | 35  |
| 103 | Macrophage morphology correlates with single-cell diversity and prognosis in colorectal liver metastasis. <i>Journal of Experimental Medicine</i> , <b>2020</b> , 217,                                                                                      | 16.6 | 35  |
| 102 | Surgical Treatment of Hepatocholangiocarcinoma: A Systematic Review. <i>Liver Cancer</i> , <b>2020</b> , 9, 15-27                                                                                                                                           | 9.1  | 33  |
| 101 | Letter to the Editor: Might Denosumab Fit in Primary Biliary Cholangitis Treatment?. <i>Hepatology</i> , <b>2020</b> , 72, 359-360                                                                                                                          | 11.2 | 1   |
| 100 | Rapid automated diagnosis of primary hepatic tumour by mass spectrometry and artificial intelligence. <i>Liver International</i> , <b>2020</b> , 40, 3117-3124                                                                                              | 7.9  | 17  |

| 99 | Biliary Tract Cancers: Molecular Heterogeneity and New Treatment Options. Cancers, 2020, 12,                                                                                                                        | 6.6          | 14 |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----|
| 98 | Transcriptional Differences for COVID-19 Disease Map Genes between Males and Females Indicate a Different Basal Immunophenotype Relevant to the Disease. <i>Genes</i> , <b>2020</b> , 11,                           | 4.2          | 5  |
| 97 | Molecular and Immunological Characterization of Biliary Tract Cancers: A Paradigm Shift Towards a Personalized Medicine. <i>Cancers</i> , <b>2020</b> , 12,                                                         | 6.6          | 25 |
| 96 | The Pathogenesis of Primary Biliary Cholangitis: A Comprehensive Review. <i>Seminars in Liver Disease</i> , <b>2020</b> , 40, 34-48                                                                                 | 7:3          | 23 |
| 95 | Management of patients with autoimmune liver disease during COVID-19 pandemic. <i>Journal of Hepatology</i> , <b>2020</b> , 73, 453-455                                                                             | 13.4         | 40 |
| 94 | Mesenchymal Stem Cells to Treat Digestive System Disorders: Progress Made and Future Directions. <i>Current Transplantation Reports</i> , <b>2019</b> , 6, 134-145                                                  | 1.5          |    |
| 93 | Tumor-Infiltrating Lymphocytes and Macrophages in Intrahepatic Cholangiocellular Carcinoma. Impact on Prognosis after Complete Surgery. <i>Journal of Gastrointestinal Surgery</i> , <b>2019</b> , 23, 2216-2224    | 3.3          | 13 |
| 92 | Effects of Age and Sex of Response to Ursodeoxycholic Acid and Transplant-free Survival in Patients With Primary Biliary Cholangitis. <i>Clinical Gastroenterology and Hepatology</i> , <b>2019</b> , 17, 2076-2084 | 4.62         | 27 |
| 91 | The tumour microenvironment and immune milieu of cholangiocarcinoma. <i>Liver International</i> , <b>2019</b> , 39 Suppl 1, 63-78                                                                                   | 7.9          | 47 |
| 90 | The immune milieu of cholangiocarcinoma: From molecular pathogenesis to precision medicine. <i>Journal of Autoimmunity</i> , <b>2019</b> , 100, 17-26                                                               | 15.5         | 18 |
| 89 | Lights and Shadows on Fibrates as Second-Line Therapy of Primary Biliary Cholangitis. <i>Gastroenterology</i> , <b>2019</b> , 156, 1930-1931                                                                        | 13.3         |    |
| 88 | Safety of vedolizumab in liver transplant recipients: A systematic review. <i>United European Gastroenterology Journal</i> , <b>2019</b> , 7, 875-880                                                               | 5.3          | 2  |
| 87 | The risk of liver cancer in autoimmune liver diseases. <i>Therapeutic Advances in Medical Oncology</i> , <b>2019</b> , 11, 1758835919861914                                                                         | 5.4          | 13 |
| 86 | Hepatotoxicity of immune check point inhibitors: Approach and management. <i>Digestive and Liver Disease</i> , <b>2019</b> , 51, 1074-1078                                                                          | 3.3          | 19 |
| 85 | Role of liver biopsy in hepatocellular carcinoma. World Journal of Gastroenterology, 2019, 25, 6041-605                                                                                                             | <b>2</b> 5.6 | 33 |
| 84 | Mediterranean Diet and NAFLD: What We Know and Questions That Still Need to Be Answered. <i>Nutrients</i> , <b>2019</b> , 11,                                                                                       | 6.7          | 27 |
| 83 | Direct-acting antivirals for chronic hepatitis C virus genotype 5 and 6 infections. <i>The Lancet Gastroenterology and Hepatology</i> , <b>2019</b> , 4, 5-6                                                        | 18.8         |    |
| 82 | Predictors of hepatocellular carcinoma in HCV cirrhotic patients treated with direct acting antivirals. <i>Digestive and Liver Disease</i> , <b>2019</b> , 51, 310-317                                              | 3.3          | 29 |

High efficacy of direct-acting anti-viral agents in hepatitis C virus-infected cirrhotic patients with 81 successfully treated hepatocellular carcinoma. A limentary Pharmacology and Therapeutics, 2018, 47,  $170^{6.1}712^{21}$ The Epigenetics of Primary Biliary Cholangitis 2018, 251-272 80 The Shifting Paradigm of Prognostic Factors of Colorectal Liver Metastases: From Tumor-Centered 79 5.3 11 to Host Immune-Centered Factors. Frontiers in Oncology, 2018, 8, 181 Common Variable Immunodeficiency and Liver Involvement. Clinical Reviews in Allergy and 78 12.3 Immunology, 2018, 55, 340-351 Is Liver Injury an Affordable Risk of Immune Checkpoint Inhibitor Therapy for Cancer?. 77 13.3 3 Gastroenterology, 2018, 155, 2021-2023 Alpha-fetoprotein screening in patients with hepatitis C-induced cirrhosis who achieved a sustained virologic response in the direct-acting antiviral agents era. Hepatobiliary and Pancreatic Diseases 76 2.1 *International*, **2018**, 17, 570-574 The impact of antiviral therapy on hepatocellular carcinoma epidemiology. Hepatic Oncology, 2018, 11 75 4 5, HEP03 No clinical impact of HCV RNA determination at the end of treatment in patients receiving directly 7.9 74 acting antivirals. Liver International, 2018, 38, 2342-2342. Changes in the Epidemiology of Primary Biliary Cholangitis. Clinics in Liver Disease, 2018, 22, 429-441 4.6 73 11 SVR is the strongest predictor of occurrence and recurrence of hepatocellular carcinoma in HCV cirrhotic patients after treatment with DAAs: a prospective multi-centric Italian study. Journal of 13.4 Hepatology, **2018**, 68, S86 Multiclass HCV resistance to direct-acting antiviral failure in real-life patients advocates for tailored 71 7.9 71 second-line therapies. Liver International, 2017, 37, 514-528 Human Defensin 2 in Primary Sclerosing Cholangitis. Clinical and Translational Gastroenterology, 70 4.2 **2017**, 8, e80 69 Geoepidemiology and the Impact of Sex on Autoimmune Diseases 2017, 323-333 68 Primary biliary cholangitis: a comprehensive overview. Hepatology International, 2017, 11, 485-499 8.8 65 Stratification of hepatocellular carcinoma risk in primary biliary cirrhosis: a multicentre 67 19.2 107 international study. Gut, 2016, 65, 321-9 66 Making Sense of Autoantibodies in Cholestatic Liver Diseases. Clinics in Liver Disease, 2016, 20, 33-46 4.6 17 Quantitation of the Rank-Rankl Axis in Primary Biliary Cholangitis. PLoS ONE, 2016, 11, e0159612 65 3.7 19 The epigenetics of PBC: The link between genetic susceptibility and environment. Clinics and 64 2.4 22 Research in Hepatology and Gastroenterology, 2016, 40, 650-659

| 63 | Serum microRNAs as novel biomarkers for primary sclerosing cholangitis and cholangiocarcinoma. <i>Clinical and Experimental Immunology</i> , <b>2016</b> , 185, 61-71                                                             | 6.2  | 59  |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|
| 62 | Evolving Trends in Female to Male Incidence and Male Mortality of Primary Biliary Cholangitis. <i>Scientific Reports</i> , <b>2016</b> , 6, 25906                                                                                 | 4.9  | 82  |
| 61 | Peak inflammation in atherosclerosis, primary biliary cirrhosis and autoimmune arthritis is counter-intuitively associated with regulatory T cell enrichment. <i>Immunobiology</i> , <b>2015</b> , 220, 1025-9                    | 3.4  | 15  |
| 60 | The overlap syndrome between primary biliary cirrhosis and primary sclerosing cholangitis. <i>Digestive and Liver Disease</i> , <b>2015</b> , 47, 432-5                                                                           | 3.3  | 21  |
| 59 | International genome-wide meta-analysis identifies new primary biliary cirrhosis risk loci and targetable pathogenic pathways. <i>Nature Communications</i> , <b>2015</b> , 6, 8019                                               | 17.4 | 185 |
| 58 | Development and Validation of a Scoring System to Predict Outcomes of Patients With Primary Biliary Cirrhosis Receiving Ursodeoxycholic Acid Therapy. <i>Gastroenterology</i> , <b>2015</b> , 149, 1804-1812.e4                   | 13.3 | 235 |
| 57 | DNA methylation profiling of the X chromosome reveals an aberrant demethylation on CXCR3 promoter in primary biliary cirrhosis. <i>Clinical Epigenetics</i> , <b>2015</b> , 7, 61                                                 | 7.7  | 66  |
| 56 | Therapeutic Potential of IL-17-Mediated Signaling Pathway in Autoimmune Liver Diseases. <i>Mediators of Inflammation</i> , <b>2015</b> , 2015, 436450                                                                             | 4.3  | 20  |
| 55 | Geoepidemiology, Genetic and Environmental Risk Factors for PBC. <i>Digestive Diseases</i> , <b>2015</b> , 33 Suppl 2, 94-101                                                                                                     | 3.2  | 24  |
| 54 | Advances in pharmacotherapy for primary biliary cirrhosis. <i>Expert Opinion on Pharmacotherapy</i> , <b>2015</b> , 16, 633-43                                                                                                    | 4    | 25  |
| 53 | Telomere dysfunction in peripheral blood mononuclear cells from patients with primary biliary cirrhosis. <i>Digestive and Liver Disease</i> , <b>2014</b> , 46, 363-8                                                             | 3.3  | 11  |
| 52 | Implications of genome-wide association studies in novel therapeutics in primary biliary cirrhosis. <i>European Journal of Immunology</i> , <b>2014</b> , 44, 945-54                                                              | 6.1  | 26  |
| 51 | What Is an Autoantibody? <b>2014</b> , 13-20                                                                                                                                                                                      |      | 1   |
| 50 | Shotgun proteomics: identification of unique protein profiles of apoptotic bodies from biliary epithelial cells. <i>Hepatology</i> , <b>2014</b> , 60, 1314-23                                                                    | 11.2 | 64  |
| 49 | Genetics and epigenetics of primary biliary cirrhosis. Seminars in Liver Disease, 2014, 34, 255-64                                                                                                                                | 7.3  | 35  |
| 48 | Levels of alkaline phosphatase and bilirubin are surrogate end points of outcomes of patients with primary biliary cirrhosis: an international follow-up study. <i>Gastroenterology</i> , <b>2014</b> , 147, 1338-49.e5; quiz e15 | 13.3 | 265 |
| 47 | Role of cholangiocytes in primary biliary cirrhosis. Seminars in Liver Disease, 2014, 34, 273-84                                                                                                                                  | 7.3  | 25  |
| 46 | Genome-wide analysis of DNA methylation, copy number variation, and gene expression in monozygotic twins discordant for primary biliary cirrhosis. <i>Frontiers in Immunology</i> , <b>2014</b> , 5, 128                          | 8.4  | 46  |

## (2011-2013)

| 45 | Antimitochondrial antibody heterogeneity and the xenobiotic etiology of primary biliary cirrhosis. <i>Hepatology</i> , <b>2013</b> , 57, 1498-508                                                                                                                      | 11.2 | 46  |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|
| 44 | Apotopes and innate immune system: novel players in the primary biliary cirrhosis scenario. <i>Digestive and Liver Disease</i> , <b>2013</b> , 45, 630-6                                                                                                               | 3.3  | 17  |
| 43 | The limitations and hidden gems of the epidemiology of primary biliary cirrhosis. <i>Journal of Autoimmunity</i> , <b>2013</b> , 46, 81-7                                                                                                                              | 15.5 | 52  |
| 42 | Y chromosome loss in male patients with primary biliary cirrhosis. <i>Journal of Autoimmunity</i> , <b>2013</b> , 41, 87-91                                                                                                                                            | 15.5 | 73  |
| 41 | Pathway-based analysis of primary biliary cirrhosis genome-wide association studies. <i>Genes and Immunity</i> , <b>2013</b> , 14, 179-86                                                                                                                              | 4.4  | 44  |
| 40 | Geoepidemiology, gender and autoimmune disease. <i>Autoimmunity Reviews</i> , <b>2012</b> , 11, A386-92                                                                                                                                                                | 13.6 | 100 |
| 39 | Autoimmunity and Turner® syndrome. Autoimmunity Reviews, 2012, 11, A538-43                                                                                                                                                                                             | 13.6 | 55  |
| 38 | X chromosome gene methylation in peripheral lymphocytes from monozygotic twins discordant for scleroderma. <i>Clinical and Experimental Immunology</i> , <b>2012</b> , 169, 253-62                                                                                     | 6.2  | 47  |
| 37 | Immunoglobulin M levels inversely correlate with CD40 ligand promoter methylation in patients with primary biliary cirrhosis. <i>Hepatology</i> , <b>2012</b> , 55, 153-60                                                                                             | 11.2 | 93  |
| 36 | The X-factor in primary biliary cirrhosis: monosomy X and xenobiotics. <i>Autoimmunity Highlights</i> , <b>2012</b> , 3, 127-32                                                                                                                                        | 3.7  | 2   |
| 35 | Towards common denominators in primary biliary cirrhosis: the role of IL-12. <i>Journal of Hepatology</i> , <b>2012</b> , 56, 731-3                                                                                                                                    | 13.4 | 35  |
| 34 | Increased loss of the Y chromosome in peripheral blood cells in male patients with autoimmune thyroiditis. <i>Journal of Autoimmunity</i> , <b>2012</b> , 38, J193-6                                                                                                   | 15.5 | 47  |
| 33 | The X chromosome and immune associated genes. <i>Journal of Autoimmunity</i> , <b>2012</b> , 38, J187-92                                                                                                                                                               | 15.5 | 199 |
| 32 | Autoimmune hepatitis type 2 associated with an unexpected and transient presence of primary biliary cirrhosis-specific antimitochondrial antibodies: a case study and review of the literature.<br>BMC Gastroenterology, <b>2012</b> , 12, 92                          | 3    | 23  |
| 31 | Comparative analysis of portal cell infiltrates in antimitochondrial autoantibody-positive versus antimitochondrial autoantibody-negative primary biliary cirrhosis. <i>Hepatology</i> , <b>2012</b> , 55, 1495-506                                                    | 11.2 | 24  |
| 30 | Immunochip analyses identify a novel risk locus for primary biliary cirrhosis at 13q14, multiple independent associations at four established risk loci and epistasis between 1p31 and 7q32 risk variants. <i>Human Molecular Genetics</i> , <b>2012</b> , 21, 5209-21 | 5.6  | 122 |
| 29 | Classical HLA-DRB1 and DPB1 alleles account for HLA associations with primary biliary cirrhosis. <i>Genes and Immunity</i> , <b>2012</b> , 13, 461-8                                                                                                                   | 4.4  | 66  |
| 28 | Modulation of CD4+ T cell responses following splenectomy in hepatitis C virus-related liver cirrhosis. Clinical and Experimental Immunology, 2011, 165, 243-50                                                                                                        | 6.2  | 31  |

| 27 | Primary biliary cirrhosis and autoimmune hepatitis: apotopes and epitopes. <i>Journal of Gastroenterology</i> , <b>2011</b> , 46 Suppl 1, 29-38                                                                                           | 6.9  | 25  |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|
| 26 | Immunopathogenesis of primary biliary cirrhosis: an old wivesRtale. Immunity and Ageing, 2011, 8, 12                                                                                                                                      | 9.7  | 22  |
| 25 | B cell depletion therapy exacerbates murine primary biliary cirrhosis. <i>Hepatology</i> , <b>2011</b> , 53, 527-35                                                                                                                       | 11.2 | 56  |
| 24 | Epithelial cell specificity and apotope recognition by serum autoantibodies in primary biliary cirrhosis. <i>Hepatology</i> , <b>2011</b> , 54, 196-203                                                                                   | 11.2 | 48  |
| 23 | Epigenetic investigation of variably X chromosome inactivated genes in monozygotic female twins discordant for primary biliary cirrhosis. <i>Epigenetics</i> , <b>2011</b> , 6, 95-102                                                    | 5.7  | 64  |
| 22 | Melatonin exerts by an autocrine loop antiproliferative effects in cholangiocarcinoma: its synthesis is reduced favoring cholangiocarcinoma growth. <i>American Journal of Physiology - Renal Physiology</i> , <b>2011</b> , 301, G623-33 | 5.1  | 41  |
| 21 | Genome-wide meta-analyses identify three loci associated with primary biliary cirrhosis. <i>Nature Genetics</i> , <b>2010</b> , 42, 658-60                                                                                                | 36.3 | 337 |
| 20 | Genetic associations in Italian primary sclerosing cholangitis: heterogeneity across Europe defines a critical role for HLA-C. <i>Journal of Hepatology</i> , <b>2010</b> , 52, 712-7                                                     | 13.4 | 40  |
| 19 | Phenotypical and functional alterations of CD8 regulatory T cells in primary biliary cirrhosis. <i>Journal of Autoimmunity</i> , <b>2010</b> , 35, 176-80                                                                                 | 15.5 | 58  |
| 18 | PBC screen: an IgG/IgA dual isotype ELISA detecting multiple mitochondrial and nuclear autoantibodies specific for primary biliary cirrhosis. <i>Journal of Autoimmunity</i> , <b>2010</b> , 35, 436-42                                   | 15.5 | 103 |
| 17 | Definition of human autoimmunityautoantibodies versus autoimmune disease. <i>Autoimmunity Reviews</i> , <b>2010</b> , 9, A259-66                                                                                                          | 13.6 | 171 |
| 16 | Biliary apotopes and anti-mitochondrial antibodies activate innate immune responses in primary biliary cirrhosis. <i>Hepatology</i> , <b>2010</b> , 52, 987-98                                                                            | 11.2 | 154 |
| 15 | Innate immunity and primary biliary cirrhosis. Current Molecular Medicine, 2009, 9, 45-51                                                                                                                                                 | 2.5  | 52  |
| 14 | The immunological potential of galectin-1 and -3. <i>Autoimmunity Reviews</i> , <b>2009</b> , 8, 360-3                                                                                                                                    | 13.6 | 82  |
| 13 | Apotopes and the biliary specificity of primary biliary cirrhosis. <i>Hepatology</i> , <b>2009</b> , 49, 871-9                                                                                                                            | 11.2 | 158 |
| 12 | Primary biliary cirrhosis is associated with altered hepatic microRNA expression. <i>Journal of Autoimmunity</i> , <b>2009</b> , 32, 246-53                                                                                               | 15.5 | 167 |
| 11 | Treatment with PEG-interferon and ribavirin for chronic hepatitis C increases neutrophil and monocyte chemotaxis. <i>Annals of the New York Academy of Sciences</i> , <b>2009</b> , 1173, 847-57                                          | 6.5  | 11  |
| 10 | Is autoimmunity a matter of sex?. Autoimmunity Reviews, 2008, 7, 626-30                                                                                                                                                                   | 13.6 | 143 |

### LIST OF PUBLICATIONS

| 9 | The consequences of apoptosis in autoimmunity. <i>Journal of Autoimmunity</i> , <b>2008</b> , 31, 257-62                                                                                 | 15.5 | 98 |  |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----|--|
| 8 | Human leukocyte antigen polymorphisms in Italian primary biliary cirrhosis: a multicenter study of 664 patients and 1992 healthy controls. <i>Hepatology</i> , <b>2008</b> , 48, 1906-12 | 11.2 | 98 |  |
| 7 | Etiopathogenesis of primary biliary cirrhosis. World Journal of Gastroenterology, 2008, 14, 3328-37                                                                                      | 5.6  | 72 |  |
| 6 | Interpreting serological tests in diagnosing autoimmune liver diseases. <i>Seminars in Liver Disease</i> , <b>2007</b> , 27, 161-72                                                      | 7.3  | 87 |  |
| 5 | Autophagy: highlighting a novel player in the autoimmunity scenario. <i>Journal of Autoimmunity</i> , <b>2007</b> , 29, 61-8                                                             | 15.5 | 83 |  |
| 4 | Primary Biliary Cirrhosis and Autoimmune Cholangitis <b>2007</b> , 235-247                                                                                                               |      | 1  |  |
| 3 | HLA class II antigens associated with lupus nephritis in Italian SLE patients. <i>Human Immunology</i> , <b>2003</b> , 64, 462-8                                                         | 2.3  | 44 |  |
| 2 | Transcriptional differences for COVID-19 Disease Map genes between males and females indicate a different basal immunophenotype relevant to the disease                                  |      | 1  |  |
| 1 | New susceptibility loci for severe COVID-19 by detailed GWAS analysis in European populations                                                                                            |      | 2  |  |