Bryan L Roth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2663504/publications.pdf

Version: 2024-02-01

464 papers 62,650 citations

997 114 h-index 1158

572 all docs

572 docs citations

572 times ranked

56157 citing authors

g-index

#	Article	IF	CITATIONS
1	Molecular insights into psychedelic drug action. Journal of Neurochemistry, 2022, 162, 24-38.	3.9	24
2	Synthon-based ligand discovery in virtual libraries of over 11 billion compounds. Nature, 2022, 601, 452-459.	27.8	153
3	Subversion of Serotonin Receptor Signaling in Osteoblasts by Kynurenine Drives Acute Myeloid Leukemia. Cancer Discovery, 2022, 12, 1106-1127.	9.4	12
4	Community guidelines for GPCR ligand bias: IUPHAR review 32. British Journal of Pharmacology, 2022, 179, 3651-3674.	5.4	84
5	Structure-Based Design of a Chemical Probe Set for the 5-HT _{5A} Serotonin Receptor. Journal of Medicinal Chemistry, 2022, 65, 4201-4217.	6.4	17
6	The promises and perils of psychedelic pharmacology for psychiatry. Nature Reviews Drug Discovery, 2022, 21, 463-473.	46.4	82
7	Agonist and antagonist TRUPATH assays for G protein-coupled receptors. STAR Protocols, 2022, 3, 101259.	1.2	6
8	TRUPATH: An Open-Source Biosensor Platform for Interrogating the GPCR Transducerome. Methods in Molecular Biology, 2022, , 185-195.	0.9	6
9	Inactive and active state structures template selective tools for the human 5-HT5A receptor. Nature Structural and Molecular Biology, 2022, 29, 677-687.	8.2	18
10	Controlling opioid receptor functional selectivity by targeting distinct subpockets of the orthosteric site. ELife, 2021, 10 , .	6.0	40
11	Structural insights into the human D1 and D2 dopamine receptor signaling complexes. Cell, 2021, 184, 931-942.e18.	28.9	140
12	Mechanism of dopamine binding and allosteric modulation of the human D1 dopamine receptor. Cell Research, 2021, 31, 593-596.	12.0	48
13	Structures of the human dopamine D3 receptor-Gi complexes. Molecular Cell, 2021, 81, 1147-1159.e4.	9.7	51
14	COVID-19: Famotidine, Histamine, Mast Cells, and Mechanisms. Frontiers in Pharmacology, 2021, 12, 633680.	3.5	64
15	Biased ligands at opioid receptors: Current status and future directions. Science Signaling, 2021, 14, .	3. 6	58
16	Introduction to the Biochemistry of Pain Special Issue. Biochemistry, 2021, 60, 1379-1380.	2.5	0
17	G-Protein Peptidomimetics Stabilize GPCR Active State Conformations. Trends in Pharmacological Sciences, 2021, 42, 429-430.	8.7	4
18	Structural Insights Accelerate the Discovery of Opioid Alternatives. Annual Review of Biochemistry, 2021, 90, 739-761.	11.1	33

#	Article	IF	CITATIONS
19	The cranial windows of perception. Neuron, 2021, 109, 2499-2501.	8.1	1
20	A promising chemical series of positive allosteric modulators of the $\hat{1}\frac{1}{4}$ -opioid receptor that enhance the antinociceptive efficacy of opioids but not their adverse effects. Neuropharmacology, 2021, 195, 108673.	4.1	16
21	A Novel Mitragynine Analog with Low-Efficacy Mu Opioid Receptor Agonism Displays Antinociception with Attenuated Adverse Effects. Journal of Medicinal Chemistry, 2021, 64, 13873-13892.	6.4	33
22	LSD-stimulated behaviors in mice require \hat{l}^2 -arrestin 2 but not \hat{l}^2 -arrestin 1. Scientific Reports, 2021, 11, 17690.	3.3	47
23	International Union of Basic and Clinical Pharmacology. CX. Classification of Receptors for 5-hydroxytryptamine; Pharmacology and Function. Pharmacological Reviews, 2021, 73, 310-520.	16.0	127
24	Structure, function and pharmacology of human itch GPCRs. Nature, 2021, 600, 170-175.	27.8	101
25	Structures of the $lf2$ receptor enable docking for bioactive ligand discovery. Nature, 2021, 600, 759-764.	27.8	113
26	The activities of drug inactive ingredients on biological targets. Science, 2020, 369, 403-413.	12.6	61
27	Differential Roles of Extracellular Histidine Residues of GPR68 for Proton-Sensing and Allosteric Modulation by Divalent Metal Ions. Biochemistry, 2020, 59, 3594-3614.	2.5	11
28	Structure of a Hallucinogen-Activated Gq-Coupled 5-HT2A Serotonin Receptor. Cell, 2020, 182, 1574-1588.e19.	28.9	270
29	TRUPATH, an open-source biosensor platform for interrogating the GPCR transducerome. Nature Chemical Biology, 2020, 16, 841-849.	8.0	281
30	Virtual discovery of melatonin receptor ligands to modulate circadian rhythms. Nature, 2020, 579, 609-614.	27.8	184
31	Nanobody-enabled monitoring of kappa opioid receptor states. Nature Communications, 2020, 11, 1145.	12.8	93
32	A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature, 2020, 583, 459-468.	27.8	3,542
33	Deschloroclozapine, a potent and selective chemogenetic actuator enables rapid neuronal and behavioral modulations in mice and monkeys. Nature Neuroscience, 2020, 23, 1157-1167.	14.8	187
34	A self-activating orphan receptor. Nature, 2020, 579, 35-36.	27.8	2
35	A Structural Understanding of Class B GPCR Selectivity and Activation Revealed. Structure, 2020, 28, 277-279.	3.3	15
36	Design of first in class bitopic ligands targeting the sodium binding pocket in opioid receptors. FASEB Journal, 2020, 34, 1-1.	0.5	1

#	Article	IF	CITATIONS
37	Structure-based discovery of potent and selective melatonin receptor agonists. ELife, 2020, 9, .	6.0	28
38	In vivo Efficacy of Novel Type Preferring MT 1 Melatonin Receptor Inverse Agonists in C3H/HeN Mouse Models of Chronobiological Behavior. FASEB Journal, 2020, 34, 1-1.	0.5	0
39	Î ² -Fluorofentanyls Are pH-Sensitive Mu Opioid Receptor Agonists. ACS Medicinal Chemistry Letters, 2019, 10, 1353-1356.	2.8	18
40	Molecular pharmacology of metabotropic receptors targeted by neuropsychiatric drugs. Nature Structural and Molecular Biology, 2019, 26, 535-544.	8.2	45
41	VEGAS as a Platform for Facile Directed Evolution in Mammalian Cells. Cell, 2019, 178, 748-761.e17.	28.9	68
42	Discovery of Human Signaling Systems: Pairing Peptides to G Protein-Coupled Receptors. Cell, 2019, 179, 895-908.e21.	28.9	157
43	Design of fluorinated cyclopropane derivatives of 2-phenylcyclopropylmethylamine leading to identification of a selective serotonin 2C (5-HT2C) receptor agonist without 5-HT2B agonism. European Journal of Medicinal Chemistry, 2019, 182, 111626.	5. 5	3
44	Harnessing Ion-Binding Sites for GPCR Pharmacology. Pharmacological Reviews, 2019, 71, 571-595.	16.0	87
45	Structural basis of ligand recognition at the human MT1 melatonin receptor. Nature, 2019, 569, 284-288.	27.8	140
46	XFEL structures of the human MT2 melatonin receptor reveal the basis of subtype selectivity. Nature, 2019, 569, 289-292.	27.8	106
47	Defining Structure–Functional Selectivity Relationships (SFSR) for a Class of Non-Catechol Dopamine D ₁ Receptor Agonists. Journal of Medicinal Chemistry, 2019, 62, 3753-3772.	6.4	15
48	D ₂ Dopamine Receptor G Protein-Biased Partial Agonists Based on Cariprazine. Journal of Medicinal Chemistry, 2019, 62, 4755-4771.	6.4	15
49	Ultra-large library docking for discovering new chemotypes. Nature, 2019, 566, 224-229.	27.8	595
50	An African-specific haplotype in MRGPRX4 is associated with menthol cigarette smoking. PLoS Genetics, 2019, 15, e1007916.	3.5	23
51	How structure informs and transforms chemogenetics. Current Opinion in Structural Biology, 2019, 57, 9-16.	5 . 7	14
52	Discrepancies in Kappa Opioid Agonist Binding Revealed through PET Imaging. ACS Chemical Neuroscience, 2019, 10, 384-395.	3.5	22
53	Intraislet glucagon signaling is critical for maintaining glucose homeostasis. JCI Insight, 2019, 4, .	5.0	102
54	High-throughput identification of G protein-coupled receptor modulators through affinity mass spectrometry screening. Chemical Science, 2018, 9, 3192-3199.	7.4	33

#	Article	IF	CITATIONS
55	Unexplored therapeutic opportunities in the human genome. Nature Reviews Drug Discovery, 2018, 17, 317-332.	46.4	263
56	5-HT2C Receptor Structures Reveal the Structural Basis of GPCR Polypharmacology. Cell, 2018, 172, 719-730.e14.	28.9	185
57	Structure of the D2 dopamine receptor bound to the atypical antipsychotic drug risperidone. Nature, 2018, 555, 269-273.	27.8	341
58	Structure of the Nanobody-Stabilized Active State of the Kappa Opioid Receptor. Cell, 2018, 172, 55-67.e15.	28.9	299
59	Biased signaling of the protonâ€sensing receptor OGR1 by benzodiazepines. FASEB Journal, 2018, 32, 862-874.	0.5	36
60	Structure-inspired design of \hat{l}^2 -arrestin-biased ligands for aminergic GPCRs. Nature Chemical Biology, 2018, 14, 126-134.	8.0	141
61	Pharmacological characterization of novel synthetic opioids (NSO) found in the recreational drug marketplace. Neuropharmacology, 2018, 134, 101-107.	4.1	78
62	Far away from the lamppost. PLoS Biology, 2018, 16, e3000067.	5.6	10
63	Phosphoproteomics Illuminates Opioid Actions. Biochemistry, 2018, 57, 5505-5506.	2.5	4
64	Donated chemical probes for open science. ELife, 2018, 7, .	6.0	80
65	DREADD Agonist 21 Is an Effective Agonist for Muscarinic-Based DREADDs <i>in Vitro</i> and <i>in Vivo</i> . ACS Pharmacology and Translational Science, 2018, 1, 61-72.	4.9	143
66	Activation mechanisms for a universal signalling protein. Nature, 2018, 557, 318-319.	27.8	1
67	Selectivity Challenges in Docking Screens for GPCR Targets and Antitargets. Journal of Medicinal Chemistry, 2018, 61, 6830-6845.	6.4	31
68	Structural determinants of 5-HT2B receptor activation and biased agonism. Nature Structural and Molecular Biology, 2018, 25, 787-796.	8.2	116
69	How high resolution x-ray crystal structures of D2-like dopamine receptors can guide the development of novel subtype-selective drugs. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, SY20-4.	0.0	0
70	Illuminating the druggable GPCR-ome. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, SY27-4.	0.0	0
71	A molecular understanding of drug actions at G protein coupled receptors. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, IAL.	0.0	0
72	Crystal Structure of an LSD-Bound Human Serotonin Receptor. Cell, 2017, 168, 377-389.e12.	28.9	340

#	Article	IF	CITATIONS
73	Protamine is an antagonist of apelin receptor, and its activity is reversed by heparin. FASEB Journal, 2017, 31, 2507-2519.	0.5	26
74	Structure-Based Discovery of New Antagonist and Biased Agonist Chemotypes for the Kappa Opioid Receptor. Journal of Medicinal Chemistry, 2017, 60, 3070-3081.	6.4	42
75	In silico design of novel probes for the atypical opioid receptor MRGPRX2. Nature Chemical Biology, 2017, 13, 529-536.	8.0	230
76	5-HT2C Agonists Modulate Schizophrenia-Like Behaviors in Mice. Neuropsychopharmacology, 2017, 42, 2163-2177.	5.4	42
77	Targeting the histone methyltransferase G9a activates imprinted genes and improves survival of a mouse model of Prader–Willi syndrome. Nature Medicine, 2017, 23, 213-222.	30.7	94
78	Discovery of new GPCR ligands to illuminate new biology. Nature Chemical Biology, 2017, 13, 1143-1151.	8.0	80
79	D ₄ dopamine receptor high-resolution structures enable the discovery of selective agonists. Science, 2017, 358, 381-386.	12.6	176
80	A Simple Representation of Three-Dimensional Molecular Structure. Journal of Medicinal Chemistry, 2017, 60, 7393-7409.	6.4	72
81	How Ligands Illuminate GPCR Molecular Pharmacology. Cell, 2017, 170, 414-427.	28.9	419
82	Structural insights into the extracellular recognition of the human serotonin 2B receptor by an antibody. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8223-8228.	7.1	54
83	The anthelmintic praziquantel is a human serotoninergic G-protein-coupled receptor ligand. Nature Communications, 2017, 8, 1910.	12.8	66
84	Discovery of <i>N</i> -Substituted (2-Phenylcyclopropyl)methylamines as Functionally Selective Serotonin 2C Receptor Agonists for Potential Use as Antipsychotic Medications. Journal of Medicinal Chemistry, 2017, 60, 6273-6288.	6.4	19
85	Fentanyl-related designer drugs W-18 and W-15 lack appreciable opioid activity in vitro and in vivo. JCI Insight, 2017, 2, .	5.0	14
86	In Vitro and In Vivo Characterization of the Alkaloid Nuciferine. PLoS ONE, 2016, 11, e0150602.	2.5	28
87	A Miniaturized Screen of a Schistosoma mansoni Serotonergic G Protein-Coupled Receptor Identifies Novel Classes of Parasite-Selective Inhibitors. PLoS Pathogens, 2016, 12, e1005651.	4.7	30
88	Creâ€dependent DREADD (Designer Receptors Exclusively Activated by Designer Drugs) mice. Genesis, 2016, 54, 439-446.	1.6	158
89	Psilocybin for depression and anxiety associated with life-threatening illnesses. Journal of Psychopharmacology, 2016, 30, 1209-1210.	4.0	14
90	Distinct cortical and striatal actions of a β-arrestin–biased dopamine D2 receptor ligand reveal unique antipsychotic-like properties. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E8178-E8186.	7.1	117

#	Article	IF	Citations
91	An alerting structure: human orexin receptor 1. Nature Structural and Molecular Biology, 2016, 23, 265-266.	8.2	4
92	Design and synthesis of dual 5-HT1A and 5-HT7 receptor ligands. Bioorganic and Medicinal Chemistry, 2016, 24, 3464-3471.	3.0	19
93	Structure-based discovery of opioid analgesics with reduced side effects. Nature, 2016, 537, 185-190.	27.8	744
94	Design and Discovery of Functionally Selective Serotonin 2C (5-HT _{2C}) Receptor Agonists. Journal of Medicinal Chemistry, 2016, 59, 9866-9880.	6.4	28
95	Translating genome-wide association findings into new therapeutics for psychiatry. Nature Neuroscience, 2016, 19, 1392-1396.	14.8	115
96	Discovery of G Protein-Biased D2 Dopamine Receptor Partial Agonists. Journal of Medicinal Chemistry, 2016, 59, 10601-10618.	6.4	49
97	Discovery and Characterization of Novel GPR39 Agonists Allosterically Modulated by Zinc. Molecular Pharmacology, 2016, 90, 726-737.	2.3	48
98	$\ddot{l}f1$ receptor ligands control a switch between passive and active threat responses. Nature Chemical Biology, 2016, 12, 552-558.	8.0	37
99	Zebrafish behavioral profiling identifies multitarget antipsychotic-like compounds. Nature Chemical Biology, 2016, 12, 559-566.	8.0	124
100	Morphine paradoxically prolongs neuropathic pain in rats by amplifying spinal NLRP3 inflammasome activation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E3441-50.	7.1	292
101	Development of CNS multi-receptor ligands: Modification of known D2 pharmacophores. Bioorganic and Medicinal Chemistry, 2016, 24, 3671-3679.	3.0	3
102	Behavioral and Physiological Effects of a Novel Kappa-Opioid Receptor-Based DREADD in Rats. Neuropsychopharmacology, 2016, 41, 402-409.	5.4	56
103	DREADDs for Neuroscientists. Neuron, 2016, 89, 683-694.	8.1	1,210
104	New Technologies for Elucidating Opioid Receptor Function. Trends in Pharmacological Sciences, 2016, 37, 279-289.	8.7	61
105	A cellular chemical probe targeting the chromodomains of Polycomb repressive complex 1. Nature Chemical Biology, 2016, 12, 180-187.	8.0	133
106	Further Advances in Optimizing (2-Phenylcyclopropyl)methylamines as Novel Serotonin 2C Agonists: Effects on Hyperlocomotion, Prepulse Inhibition, and Cognition Models. Journal of Medicinal Chemistry, 2016, 59, 578-591.	6.4	26
107	Elucidation of The Behavioral Program and Neuronal Network Encoded by Dorsal Raphe Serotonergic Neurons. Neuropsychopharmacology, 2016, 41, 1404-1415.	5.4	118
108	Comprehensive characterization of the Published Kinase Inhibitor Set. Nature Biotechnology, 2016, 34, 95-103.	17.5	289

#	Article	IF	Citations
109	Salvinorin <scp>A</scp> analogues <scp>PR</scp> â€37 and <scp>PR</scp> â€38 attenuate compound 48/80â€induced itch responses in mice. British Journal of Pharmacology, 2015, 172, 4331-4341.	5.4	16
110	Optimization of 2-Phenylcyclopropylmethylamines as Selective Serotonin 2C Receptor Agonists and Their Evaluation as Potential Antipsychotic Agents. Journal of Medicinal Chemistry, 2015, 58, 1992-2002.	6.4	31
111	Structural basis for bifunctional peptide recognition at human \hat{l} -opioid receptor. Nature Structural and Molecular Biology, 2015, 22, 265-268.	8.2	151
112	Structure and function of serotonin G protein-coupled receptors., 2015, 150, 129-142.		275
113	The G Protein–Biased <i>κ</i> Popioid Receptor Agonist RB-64 Is Analgesic with a Unique Spectrum of Activities In Vivo. Journal of Pharmacology and Experimental Therapeutics, 2015, 352, 98-109.	2.5	153
114	DREADD: A Chemogenetic GPCR Signaling Platform. International Journal of Neuropsychopharmacology, 2015, 18, pyu007-pyu007.	2.1	78
115	The First Structure–Activity Relationship Studies for Designer Receptors Exclusively Activated by Designer Drugs. ACS Chemical Neuroscience, 2015, 6, 476-484.	3.5	128
116	A Potent, Selective and Cellâ€Active Allosteric Inhibitor of Protein Arginine Methyltransferaseâ€3 (PRMT3). Angewandte Chemie - International Edition, 2015, 54, 5166-5170.	13.8	95
117	Single Amino Acid Variation Underlies Species-Specific Sensitivity to Amphibian Skin-Derived Opioid-like Peptides. Chemistry and Biology, 2015, 22, 764-775.	6.0	14
118	The promise and peril of chemical probes. Nature Chemical Biology, 2015, 11, 536-541.	8.0	698
119	Integrated Approaches for Genome-wide Interrogation of the Druggable Non-olfactory G Protein-coupled Receptor Superfamily. Journal of Biological Chemistry, 2015, 290, 19471-19477.	3.4	76
120	A New DREADD Facilitates the Multiplexed Chemogenetic Interrogation of Behavior. Neuron, 2015, 86, 936-946.	8.1	320
121	Design and synthesis of (2-(5-chloro-2,2-dimethyl-2,3-dihydrobenzofuran-7-yl)cyclopropyl)methanamine as a selective serotonin 2C agonist. Tetrahedron Letters, 2015, 56, 3420-3422.	1.4	15
122	PRESTO-Tango as an open-source resource for interrogation of the druggable human GPCRome. Nature Structural and Molecular Biology, 2015, 22, 362-369.	8.2	535
100			
123	Serotonin-2C and -2a receptor co-expression on cells in the rat medial prefrontal cortex. Neuroscience, 2015, 297, 22-37.	2.3	61
124		9.0	34
	Neuroscience, 2015, 297, 22-37.		

#	Article	IF	CITATIONS
127	NMR structure and dynamics of the agonist dynorphin peptide bound to the human kappa opioid receptor. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11852-11857.	7.1	80
128	Allosteric ligands for the pharmacologically dark receptors GPR68 and GPR65. Nature, 2015, 527, 477-483.	27.8	214
129	Molecular interactions between general anesthetics and the 5HT _{2B} receptor. Journal of Biomolecular Structure and Dynamics, 2015, 33, 211-218.	3.5	10
130	DREADDs (Designer Receptors Exclusively Activated by Designer Drugs): Chemogenetic Tools with Therapeutic Utility. Annual Review of Pharmacology and Toxicology, 2015, 55, 399-417.	9.4	539
131	The TLQP-21 Peptide Activates the G-Protein-Coupled Receptor C3aR1 via a Folding-upon-Binding Mechanism. Structure, 2014, 22, 1744-1753.	3.3	59
132	Michael acceptor approach to the design of new salvinorin A-based high affinity ligands for the kappa-opioid receptor. European Journal of Medicinal Chemistry, 2014, 85, 818-829.	5.5	21
133	HTS navigator: freely accessible cheminformatics software for analyzing high-throughput screening data. Bioinformatics, 2014, 30, 588-589.	4.1	16
134	Sh-I-048A, an in vitro non-selective super-agonist at the benzodiazepine site of GABAA receptors: The approximated activation of receptor subtypes may explain behavioral effects. Brain Research, 2014, 1554, 36-48.	2.2	17
135	Chemogenetic Inactivation of Ventral Hippocampal Glutamatergic Neurons Disrupts Consolidation of Contextual Fear Memory. Neuropsychopharmacology, 2014, 39, 1880-1892.	5.4	135
136	Allosteric sodium in class A GPCR signaling. Trends in Biochemical Sciences, 2014, 39, 233-244.	7. 5	417
137	Identification of a new selective dopamine D4 receptor ligand. Bioorganic and Medicinal Chemistry, 2014, 22, 3105-3114.	3.0	24
138	Synthesis, Pharmacological Characterization, and Structure–Activity Relationship Studies of Small Molecular Agonists for the Orphan GPR88 Receptor. ACS Chemical Neuroscience, 2014, 5, 576-587.	3.5	41
139	Molecular control of δ-opioid receptor signalling. Nature, 2014, 506, 191-196.	27.8	432
140	Identification of Novel Functionally Selective <i>\hat{l}^2</i> -Opioid Receptor Scaffolds. Molecular Pharmacology, 2014, 85, 83-90.	2.3	117
141	Structural basis for Smoothened receptor modulation and chemoresistance to anticancer drugs. Nature Communications, 2014, 5, 4355.	12.8	208
142	Further evaluation of the tropane analogs of haloperidol. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 4294-4297.	2.2	13
143	Chemogenetic Tools to Interrogate Brain Functions. Annual Review of Neuroscience, 2014, 37, 387-407.	10.7	412
144	DREADDs: novel tools for drug discovery and development. Drug Discovery Today, 2014, 19, 469-473.	6.4	75

#	Article	IF	CITATIONS
145	Application of Quantitative Structure–Activity Relationship Models of 5-HT _{1A} Receptor Binding to Virtual Screening Identifies Novel and Potent 5-HT _{1A} Ligands. Journal of Chemical Information and Modeling, 2014, 54, 634-647.	5.4	26
146	Tuning up the right signal: chemical and genetic approaches to study GPCR functions. Current Opinion in Cell Biology, 2014, 27, 51-55.	5.4	23
147	Silencing Synapses with DREADDs. Neuron, 2014, 82, 723-725.	8.1	66
148	Novel Molecular Targets of Dezocine and Their Clinical Implications. Anesthesiology, 2014, 120, 714-723.	2.5	77
149	Functional Evolution of Opioid Family G Protein-Coupled Receptors. Methods in Pharmacology and Toxicology, 2014, , 85-104.	0.2	1
150	Chemotype-selective Modes of Action of \hat{l}^2 -Opioid Receptor Agonists. Journal of Biological Chemistry, 2013, 288, 34470-34483.	3.4	55
151	Direct-Pathway Striatal Neurons Regulate the Retention of Decision-Making Strategies. Journal of Neuroscience, 2013, 33, 11668-11676.	3.6	77
152	4β-Methyl-5-(3-hydroxyphenyl)morphan Opioid Agonist and Partial Agonist Derived from a 4β-Methyl-5-(3-hydroxyphenyl)morphan Pure Antagonist. Journal of Medicinal Chemistry, 2013, 56, 8826-8833.	6.4	6
153	Discovery of an in Vivo Chemical Probe of the Lysine Methyltransferases G9a and GLP. Journal of Medicinal Chemistry, 2013, 56, 8931-8942.	6.4	220
154	Pharmacosynthetics: Reimagining the pharmacogenetic approach. Brain Research, 2013, 1511, 6-20.	2.2	92
155	Discovery of \hat{I}^2 2 Adrenergic Receptor Ligands Using Biosensor Fragment Screening of Tagged Wild-Type Receptor. ACS Medicinal Chemistry Letters, 2013, 4, 1005-1010.	2.8	65
156	Aryl Biphenylâ€3â€ylmethylpiperazines as 5â€HT ₇ Receptor Antagonists. ChemMedChem, 2013, 8, 1855-1864.	3.2	12
157	Search for $\hat{l}\pm3\hat{l}^22/3\hat{l}^32$ subtype selective ligands that are stable on human liver microsomes. Bioorganic and Medicinal Chemistry, 2013, 21, 93-101.	3.0	17
158	Neurochemical profiles of some novel psychoactive substances. European Journal of Pharmacology, 2013, 700, 147-151.	3.5	150
159	A pharmacological organization of G protein–coupled receptors. Nature Methods, 2013, 10, 140-146.	19.0	89
160	Conformational Ensembles in GPCR Activation. Cell, 2013, 152, 385-386.	28.9	25
161	DREADDs in Drosophila: A Pharmacogenetic Approach for Controlling Behavior, Neuronal Signaling, and Physiology in the Fly. Cell Reports, 2013, 4, 1049-1059.	6.4	40
162	Intestinal Epithelial Cellâ \in "Derived $\hat{1}$ 4-Opioid Signaling Protects against Ischemia Reperfusion Injury through PI3K Signaling. American Journal of Pathology, 2013, 182, 776-785.	3.8	34

#	Article	IF	CITATIONS
163	Discovery of aryl-biphenyl-2-ylmethylpiperazines as novel scaffolds for 5-HT7 ligands and role of the aromatic substituents in binding to the target receptor. Bioorganic and Medicinal Chemistry, 2013, 21, 2568-2576.	3.0	12
164	Photochemical activation of TRPA1 channels in neurons and animals. Nature Chemical Biology, 2013, 9, 257-263.	8.0	97
165	Conformation Guides Molecular Efficacy in Docking Screens of Activated \hat{l}^2 -2 Adrenergic G Protein Coupled Receptor. ACS Chemical Biology, 2013, 8, 1018-1026.	3.4	101
166	Inhibition of Mediodorsal Thalamus Disrupts Thalamofrontal Connectivity and Cognition. Neuron, 2013, 77, 1151-1162.	8.1	318
167	Structural Features for Functional Selectivity at Serotonin Receptors. Science, 2013, 340, 615-619.	12.6	600
168	Structural Basis for Molecular Recognition at Serotonin Receptors. Science, 2013, 340, 610-614.	12.6	454
169	Colloidal Aggregation Causes Inhibition of G Protein-Coupled Receptors. Journal of Medicinal Chemistry, 2013, 56, 2406-2414.	6.4	91
170	Kappa-opioid receptor-selective dicarboxylic ester-derived salvinorin A ligands. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 2860-2862.	2.2	13
171	Impossible or Merely Difficult? Two Grand Challenges from a Biologist's Perspective. ACS Medicinal Chemistry Letters, 2013, 4, 316-318.	2.8	7
172	A Gαs DREADD Mouse for Selective Modulation of cAMP Production in Striatopallidal Neurons. Neuropsychopharmacology, 2013, 38, 854-862.	5 . 4	116
173	An analysis of the synthetic tryptamines AMT and 5-MeO-DALT: Emerging â€~Novel Psychoactive Drugs'. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 3411-3415.	2.2	36
174	Structure of the human smoothened receptor bound to an antitumour agent. Nature, 2013, 497, 338-343.	27.8	415
175	An Orally Bioavailable Chemical Probe of the Lysine Methyltransferases EZH2 and EZH1. ACS Chemical Biology, 2013, 8, 1324-1334.	3.4	399
176	Modulation of the autonomic nervous system and behaviour by acute glial cell G _q proteinâ€coupled receptor activation ⟨i⟩in vivo⟨/i⟩. Journal of Physiology, 2013, 591, 5599-5609.	2.9	129
177	In Silico Molecular Comparisons of C. elegans and Mammalian Pharmacology Identify Distinct Targets That Regulate Feeding. PLoS Biology, 2013, 11, e1001712.	5 . 6	18
178	Synthesis and Evaluation of ¹⁸ F-FE-PEO in Rodents: An ¹⁸ F-Labeled Full Agonist for Opioid Receptor Imaging. Journal of Nuclear Medicine, 2013, 54, 299-305.	5.0	19
178	Synthesis and Evaluation of ¹⁸ F-FE-PEO in Rodents: An ¹⁸ F-Labeled Full Agonist for Opioid Receptor Imaging. Journal of Nuclear Medicine, 2013, 54, 299-305. Lorcaserin and pimavanserin: emerging selectivity of serotonin receptor subtype–targeted drugs. Journal of Clinical Investigation, 2013, 123, 4986-4991.	5.0	19

#	Article	IF	Citations
181	Selective \hat{I}^2 Opioid Antagonists nor-BNI, GNTI and JDTic Have Low Affinities for Non-Opioid Receptors and Transporters. PLoS ONE, 2013, 8, e70701.	2.5	27
182	Automated design of ligands to polypharmacological profiles. Nature, 2012, 492, 215-220.	27.8	698
183	Studies of a ubiquitous receptor family. Nature, 2012, 492, 57-57.	27.8	18
184	Psychotomimetic Effects of Kappa Opioid Receptor Agonists. Biological Psychiatry, 2012, 72, 797-798.	1.3	11
185	Marine Algal Toxin Azaspiracid Is an Open-State Blocker of hERG Potassium Channels. Chemical Research in Toxicology, 2012, 25, 1975-1984.	3.3	72
186	Identifying mechanism-of-action targets for drugs and probes. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 11178-11183.	7.1	156
187	Topoisomerase inhibitors unsilence the dormant allele of Ube3a in neurons. Nature, 2012, 481, 185-189.	27.8	318
188	Structure–Functional Selectivity Relationship Studies of β-Arrestin-Biased Dopamine D ₂ Receptor Agonists. Journal of Medicinal Chemistry, 2012, 55, 7141-7153.	6.4	118
189	Quantitative Analysis of Focused A-To-I RNA Editing Sites by Ultra-High-Throughput Sequencing in Psychiatric Disorders. PLoS ONE, 2012, 7, e43227.	2.5	39
190	Generation of a Synthetic Memory Trace. Science, 2012, 335, 1513-1516.	12.6	335
191	Structure of the nociceptin/orphanin FQ receptor in complex with a peptide mimetic. Nature, 2012, 485, 395-399.	27.8	430
192	Structure of the human κ-opioid receptor in complex with JDTic. Nature, 2012, 485, 327-332.	27.8	797
193	Chemocentric Informatics Approach to Drug Discovery: Identification and Experimental Validation of Selective Estrogen Receptor Modulators as Ligands of 5-Hydroxytryptamine-6 Receptors and as Potential Cognition Enhancers. Journal of Medicinal Chemistry, 2012, 55, 5704-5719.	6.4	42
194	Hallucinogen actions on human brain revealed. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 1820-1821.	7.1	72
195	Chemical informatics and target identification in a zebrafish phenotypic screen. Nature Chemical Biology, 2012, 8, 144-146.	8.0	113
196	Life Beyond Kinases: Structure-Based Discovery of Sorafenib as Nanomolar Antagonist of 5-HT Receptors. Journal of Medicinal Chemistry, 2012, 55, 5749-5759.	6.4	68
197	Bis-spirolabdane Diterpenoids from <i>Leonotis nepetaefolia</i> . Journal of Natural Products, 2012, 75, 728-734.	3.0	25
198	Benzothiazoles as probes for the 5HT1A receptor and the serotonin transporter (SERT): A search for new dual-acting agents as potential antidepressants. European Journal of Medicinal Chemistry, 2012, 53, 124-132.	5.5	23

#	Article	IF	Citations
199	4-Aminoethylpiperazinyl aryl ketones with 5-HT1A/5-HT7 selectivity. Bioorganic and Medicinal Chemistry, 2012, 20, 1139-1148.	3.0	10
200	Multi-receptor drug design: Haloperidol as a scaffold for the design and synthesis of atypical antipsychotic agents. Bioorganic and Medicinal Chemistry, 2012, 20, 1291-1297.	3.0	32
201	Structure–activity relationship studies of SYA 013, a homopiperazine analog of haloperidol. Bioorganic and Medicinal Chemistry, 2012, 20, 1671-1678.	3.0	23
202	The Presynaptic Component of the Serotonergic System is Required for Clozapine's Efficacy. Neuropsychopharmacology, 2011, 36, 638-651.	5.4	63
203	Ligand discovery from a dopamine D3 receptor homology model and crystal structure. Nature Chemical Biology, 2011, 7, 769-778.	8.0	285
204	Endocrine Regulation of Male Fertility by the Skeleton. Cell, 2011, 144, 796-809.	28.9	542
205	Receptor screening technologies in the evaluation of Amazonian ethnomedicines with potential applications to cognitive deficits. Journal of Ethnopharmacology, 2011, 134, 475-492.	4.1	11
206	Irving Page Lecture: 5-HT2A serotonin receptor biology: Interacting proteins, kinases and paradoxical regulation. Neuropharmacology, 2011, 61, 348-354.	4.1	51
207	Design, Synthesis, and Validation of a β-Turn Mimetic Library Targeting Protein–Protein and Peptide–Receptor Interactions. Journal of the American Chemical Society, 2011, 133, 10184-10194.	13.7	74
208	Transient neuronal inhibition reveals opposing roles of indirect and direct pathways in sensitization. Nature Neuroscience, 2011, 14, 22-24.	14.8	377
209	A chemical probe selectively inhibits G9a and GLP methyltransferase activity in cells. Nature Chemical Biology, 2011, 7, 566-574.	8.0	465
210	Securinine, a Myeloid Differentiation Agent with Therapeutic Potential for AML. PLoS ONE, 2011, 6, e21203.	2.5	50
211	Serotonin receptors and heart valve diseaseâ€"It was meant 2B. , 2011, 132, 146-157.		175
212	Rational Drug Design Leading to the Identification of a Potent 5-HT _{2C} Agonist Lacking 5-HT _{2B} Activity. ACS Medicinal Chemistry Letters, 2011, 2, 929-932.	2.8	15
213	Strategies to Discover Unexpected Targets for Drugs Active at G Protein–Coupled Receptors. Annual Review of Pharmacology and Toxicology, 2011, 51, 117-144.	9.4	189
214	Synthesis and biological evaluation of new salvinorin A analogues incorporating natural amino acids. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 160-163.	2.2	10
215	Synthesis and receptor profiling of <i>Stemona </i> alkaloid analogues reveal a potent class of sigma ligands. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 6727-6732.	7.1	30
216	Remote Control of Neuronal Signaling. Pharmacological Reviews, 2011, 63, 291-315.	16.0	293

#	Article	IF	Citations
217	Discovery of β-Arrestin–Biased Dopamine D ₂ Ligands for Probing Signal Transduction Pathways Essential for Antipsychotic Efficacy. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 18488-18493.	7.1	312
218	Antagonist Functional Selectivity: 5-HT _{2A} Serotonin Receptor Antagonists Differentially Regulate 5-HT _{2A} Receptor Protein Level In Vivo. Journal of Pharmacology and Experimental Therapeutics, 2011, 339, 99-105.	2.5	71
219	Functional SNPs in Genes Encoding the 5-HT _{2A} Receptor Modify the Affinity and Potency of Several Atypical Antipsychotic Drugs. Biological Research for Nursing, 2011, 13, 55-60.	1.9	12
220	Vision and olfaction say UNC-le to G proteins. Nature Neuroscience, 2011, 14, 805-806.	14.8	0
221	Schizophrenia risk gene CAV1 is both pro-psychotic and required for atypical antipsychotic drug actions in vivo. Translational Psychiatry, 2011, 1, e33-e33.	4.8	32
222	Rapid, reversible activation of AgRP neurons drives feeding behavior in mice. Journal of Clinical Investigation, 2011, 121, 1424-1428.	8.2	1,184
223	Pharmacogenetic Modulation of Orexin Neurons Alters Sleep/Wakefulness States in Mice. PLoS ONE, 2011, 6, e20360.	2.5	216
224	Antagonism of the 5â€HT2B receptor prevents TGFâ€beta1 effects in aortic valve fibroblasts. FASEB Journal, 2011, 25, 177.5.	0.5	2
225	Chemical Modifications on 4-Arylpiperazine-Ethyl Carboxamide Derivatives Differentially Modulate Affinity for 5-HT1A, D4.2, and α2A Receptors: Synthesis and In Vitro Radioligand Binding Studies. Australian Journal of Chemistry, 2010, 63, 56.	0.9	10
226	Deorphanization of Novel Peptides and Their Receptors. AAPS Journal, 2010, 12, 378-384.	4.4	29
227	Role of kappa-opioid receptors in the effects of salvinorin A and ketamine on attention in rats. Psychopharmacology, 2010, 210, 263-274.	3.1	80
228	CoMFA analyses of C-2 position Salvinorin A analogs at the kappa-opioid receptor provides insights into epimer selectivity. Journal of Molecular Graphics and Modelling, 2010, 28, 612-625.	2.4	12
229	Mice with altered serotonin 2C receptor RNA editing display characteristics of Prader–Willi syndrome. Neurobiology of Disease, 2010, 39, 169-180.	4.4	121
230	HTS and Rational Drug Design to Generate a Class of 5â€HT _{2C} â€Selective Ligands for Possible Use in Schizophrenia ChemMedChem, 2010, 5, 1221-1225.	3.2	24
231	9-Aminomethyl-9,10-dihydroanthracene (AMDA) analogs as structural probes for steric tolerance in 5-HT2A and H1 receptor binding sites. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 935-938.	2.2	7
232	N-Tetrahydrothiochromenoisoxazole-1-carboxamides as selective antagonists of cloned human 5-HT2B. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 5488-5490.	2.2	8
233	CRF receptor 1 regulates anxiety behavior via sensitization of 5-HT2 receptor signaling. Nature Neuroscience, 2010, 13, 622-629.	14.8	176
234	Directed molecular evolution of DREADDs: a generic approach to creating next-generation RASSLs. Nature Protocols, 2010, 5, 561-573.	12.0	131

#	Article	IF	CITATIONS
235	Genetic Deletion of p90 Ribosomal S6 Kinase 2 Alters Patterns of 5-Hydroxytryptamine sub>2A sub> Serotonin Receptor Functional Selectivity. Molecular Pharmacology, 2010, 77, 327-338.	2.3	33
236	Identification of Human <i>Ether-Ã-go-go</i> Related Gene Modulators by Three Screening Platforms in an Academic Drug-Discovery Setting. Assay and Drug Development Technologies, 2010, 8, 727-742.	1.2	67
237	Allosteric Antipsychotics: M4 Muscarinic Potentiators as Novel Treatments for Schizophrenia. Neuropsychopharmacology, 2010, 35, 851-852.	5.4	16
238	RNA interference screen for RGS protein specificity at muscarinic and protease-activated receptors reveals bidirectional modulation of signaling. American Journal of Physiology - Cell Physiology, 2010, 299, C654-C664.	4.6	14
239	Assessing serotonin receptor mRNA editing frequency by a novel ultra high-throughput sequencing method. Nucleic Acids Research, 2010, 38, e118-e118.	14.5	37
240	The Medicinal Chemistry of 5-HT6 Receptor Ligands with a Focus on Arylsulfonyltryptamine Analogs. Current Topics in Medicinal Chemistry, 2010, 10, 579-595.	2.1	34
241	A chemical-genetic approach for precise spatio-temporal control of cellular signaling. Molecular BioSystems, 2010, 6, 1376.	2.9	50
242	Development, Validation, and Use of Quantitative Structureâ [^] Activity Relationship Models of 5-Hydroxytryptamine (2B) Receptor Ligands to Identify Novel Receptor Binders and Putative Valvulopathic Compounds among Common Drugs. Journal of Medicinal Chemistry, 2010, 53, 7573-7586.	6.4	38
243	<i>N</i> -Alkyl-octahydroisoquinolin-1-one-8-carboxamides: Selective and Nonbasic κ-Opioid Receptor Ligands. ACS Medicinal Chemistry Letters, 2010, 1, 189-193.	2.8	22
244	Generation of Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) Using Directed Molecular Evolution. Current Protocols in Neuroscience, 2010, 50, Unit 4.33.	2.6	18
245	Novel positive allosteric modulators of GABAA receptors: Do subtle differences in activity at $\hat{l}\pm 1$ plus $\hat{l}\pm 5$ versus $\hat{l}\pm 2$ plus $\hat{l}\pm 3$ subunits account for dissimilarities in behavioral effects in rats?. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2010, 34, 376-386.	4.8	43
246	Anxiolytic-like effects of 8-acetylene imidazobenzodiazepines in a rhesus monkey conflict procedure. Neuropharmacology, 2010, 59, 612-618.	4.1	55
247	p90 Ribosomal S6 Kinase 2, a Novel GPCR Kinase, Is Required for Growth Factor-Mediated Attenuation of GPCR Signaling. Biochemistry, 2010, 49, 2657-2671.	2.5	20
248	Engineered G-protein coupled receptors are powerful tools to investigate biological processes and behaviors. Frontiers in Molecular Neuroscience, 2009, 2, 16.	2.9	59
249	Evidence for the Involvement of Dopamine Transporters in Behavioral Stimulant Effects of Modafinil. Journal of Pharmacology and Experimental Therapeutics, 2009, 329, 738-746.	2.5	169
250	Structural Determinants of G-protein \hat{l}_{\pm} Subunit Selectivity by Regulator of G-protein Signaling 2 (RGS2). Journal of Biological Chemistry, 2009, 284, 19402-19411.	3.4	62
251	Rapid modulation of spine morphology by the 5-HT _{2A} serotonin receptor through kalirin-7 signaling. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 19575-19580.	7.1	174
252	Ribosomal S6 Kinase 2 Directly Phosphorylates the 5-Hydroxytryptamine 2A (5-HT2A) Serotonin Receptor, Thereby Modulating 5-HT2A Signaling. Journal of Biological Chemistry, 2009, 284, 5557-5573.	3.4	37

#	Article	IF	CITATIONS
253	A chemical-genetic approach to study G protein regulation of \hat{l}^2 cell function in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 19197-19202.	7.1	287
254	PSD-95 Is Essential for Hallucinogen and Atypical Antipsychotic Drug Actions at Serotonin Receptors. Journal of Neuroscience, 2009, 29, 7124-7136.	3.6	118
255	Parallel Functional Activity Profiling Reveals Valvulopathogens Are Potent 5-Hydroxytryptamine _{2B} Receptor Agonists: Implications for Drug Safety Assessment. Molecular Pharmacology, 2009, 76, 710-722.	2.3	125
256	Caveolin-1 and Lipid Microdomains Regulate G _s Trafficking and Attenuate G _s /Adenylyl Cyclase Signaling. Molecular Pharmacology, 2009, 76, 1082-1093.	2.3	75
257	Amisulpride is a potent 5-HT7 antagonist: relevance for antidepressant actions in vivo. Psychopharmacology, 2009, 205, 119-128.	3.1	240
258	Predicting new molecular targets for known drugs. Nature, 2009, 462, 175-181.	27.8	1,474
259	Synthesis and evaluation of ligands for D2-like receptors: The role of common pharmacophoric groups. Bioorganic and Medicinal Chemistry, 2009, 17, 1716-1723.	3.0	13
260	Synthesis, structure–affinity relationships, and modeling of AMDA analogs at 5-HT2A and H1 receptors: Structural factors contributing to selectivity. Bioorganic and Medicinal Chemistry, 2009, 17, 6496-6504.	3.0	22
261	Antiseizure Activity of Novel \hat{I}^3 -Aminobutyric Acid (A) Receptor Subtype-Selective Benzodiazepine Analogues in Mice and Rat Models. Journal of Medicinal Chemistry, 2009, 52, 1795-1798.	6.4	60
262	Improvement of Pharmacological Properties of Irreversible Thyroid Receptor Coactivator Binding Inhibitors. Journal of Medicinal Chemistry, 2009, 52, 3892-3901.	6.4	51
263	Remote Control of Neuronal Activity in Transgenic Mice Expressing Evolved G Protein-Coupled Receptors. Neuron, 2009, 63, 27-39.	8.1	809
264	Historical Overview of the Concept of Functional Selectivity. , 2009, , 3-7.		1
265	The Expanded Biology of Serotonin. Annual Review of Medicine, 2009, 60, 355-366.	12.2	1,451
266	Selective 5-Hydroxytryptamine 2C Receptor Agonists Derived from the Lead Compound Tranylcypromine: Identification of Drugs with Antidepressant-Like Action. Journal of Medicinal Chemistry, 2009, 52, 1885-1902.	6.4	54
267	Structure-Based Design, Synthesis, and Biochemical and Pharmacological Characterization of Novel Salvinorin A Analogues as Active State Probes of the Î ² -Opioid Receptor. Biochemistry, 2009, 48, 6898-6908.	2.5	65
268	Novel Inhibitors of Human Histone Deacetylase (HDAC) Identified by QSAR Modeling of Known Inhibitors, Virtual Screening, and Experimental Validation. Journal of Chemical Information and Modeling, 2009, 49, 461-476.	5.4	99
269	Structure and Function of the Third Intracellular Loop of the 5-Hydroxytryptamine2A Receptor: The Third Intracellular Loop Is α-Helical and Binds Purified Arrestins. Journal of Neurochemistry, 2008, 72, 2206-2214.	3.9	89
270	Identification of a butyrophenone analog as a potential atypical antipsychotic agent: 4-[4-(4-Chlorophenyl)-1,4-diazepan-1-yl]-1-(4-fluorophenyl)butan-1-one. Bioorganic and Medicinal Chemistry, 2008, 16, 7291-7301.	3.0	44

#	Article	IF	CITATIONS
271	Methoxy-substituted 9-aminomethyl-9,10-dihydroanthracene (AMDA) derivatives exhibit differential binding affinities at the 5-HT2A receptor. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 5268-5271.	2.2	9
272	Short synthesis of a novel class of salvinorin A analogs with hemiacetalic structure. Tetrahedron Letters, 2008, 49, 937-940.	1.4	10
273	Engineering GPCR signaling pathways with RASSLs. Nature Methods, 2008, 5, 673-678.	19.0	223
274	Electrifying cell receptors. Nature Nanotechnology, 2008, 3, 587-588.	31.5	2
275	Pimavanserin tartrate: a 5-HT2A inverse agonist with potential for treating various neuropsychiatric disorders. Expert Opinion on Pharmacotherapy, 2008, 9, 3251-3259.	1.8	74
276	Ontogeny of serotonin and serotonin2A receptors in rat auditory cortex. Hearing Research, 2008, 244, 45-50.	2.0	20
277	Insights into the regulation of 5-HT2A serotonin receptors by scaffolding proteins and kinases. Neuropharmacology, 2008, 55, 961-968.	4.1	45
278	Binding of Serotonin and N1-Benzenesulfonyltryptamine-Related Analogs at Human 5-HT6 Serotonin Receptors: Receptor Modeling Studies. Journal of Medicinal Chemistry, 2008, 51, 603-611.	6.4	36
279	Potential Modes of Interaction of 9-Aminomethyl-9,10-dihydroanthracene (AMDA) Derivatives with the 5-HT _{2A} Receptor: A Ligand Structure-Affinity Relationship, Receptor Mutagenesis and Receptor Modeling Investigation. Journal of Medicinal Chemistry, 2008, 51, 6808-6828.	6.4	34
280	New Insights into the Function of M ₄ Muscarinic Acetylcholine Receptors Gained Using a Novel Allosteric Modulator and a DREADD (Designer Receptor Exclusively Activated by a Designer) Tj ETQq0 0 0	rg B I3∕Ove	rlo alo3 0 Tf 50
281	Gα-Subunits Differentially Alter the Conformation and Agonist Affinity of κ-Opioid Receptors. Biochemistry, 2008, 47, 1567-1578.	2.5	49
282	<i>N</i> -Methylacetamide Analog of Salvinorin A: A Highly Potent and Selective κ-Opioid Receptor Agonist with Oral Efficacy. Journal of Pharmacology and Experimental Therapeutics, 2008, 324, 188-195.	2.5	42
283	Identification of 6-Benzylthioinosine as a Myeloid Leukemia Differentiation–Inducing Compound. Cancer Research, 2008, 68, 4369-4376.	0.9	20
284	Opportunities and Challenges of Psychiatric Drug Discovery: Roles for Scientists in Academic, Industry, and Government Settings. Neuropsychopharmacology, 2008, 33, 2048-2060.	5.4	80
285	N-Desalkylquetiapine, a Potent Norepinephrine Reuptake Inhibitor and Partial 5-HT1A Agonist, as a Putative Mediator of Quetiapine's Antidepressant Activity. Neuropsychopharmacology, 2008, 33, 2303-2312.	5.4	282
286	Arresting serotonin. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 831-832.	7.1	33
287	Engineered GPCRs as Tools to Modulate Signal Transduction. Physiology, 2008, 23, 313-321.	3.1	68
288	Massively Parallel Screening of the Receptorome. Combinatorial Chemistry and High Throughput Screening, 2008, 11, 420-426.	1.1	53

#	Article	IF	Citations
289	High-Dose Olanzapine for Treatment-Resistant Schizophrenia. Journal of Clinical Psychiatry, 2008, 69, 176-177.	2.2	4
290	Novel Mechanisms of Drug Treatment in Psychiatry. , 2008, , 519-534.		0
291	Differential Helical Orientations among Related G Protein-coupled Receptors Provide a Novel Mechanism for Selectivity. Journal of Biological Chemistry, 2007, 282, 3146-3156.	3.4	31
292	Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 5163-5168.	7.1	1,683
293	Molecular Targets for Treating Cognitive Dysfunction in Schizophrenia. Schizophrenia Bulletin, 2007, 33, 1100-1119.	4.3	205
294	Functional Selectivity and Classical Concepts of Quantitative Pharmacology. Journal of Pharmacology and Experimental Therapeutics, 2007, 320, 1-13.	2.5	997
295	Drugs and Valvular Heart Disease. New England Journal of Medicine, 2007, 356, 6-9.	27.0	450
296	Novel oxotremorine-related heterocyclic derivatives: Synthesis and in vitro pharmacology at the muscarinic receptor subtypes. Bioorganic and Medicinal Chemistry, 2007, 15, 7626-7637.	3.0	8
297	Further studies on the binding of N1-substituted tryptamines at h5-HT6 receptors. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 1691-1694.	2.2	13
298	Synthesis and in vitro binding studies of substituted piperidine naphthamides. Part I: Influence of the substitution on the basic nitrogen and the position of the amide on the affinity for D2L, D4.2, and 5-HT2A receptors. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 1565-1569.	2.2	8
299	Synthesis and in vitro binding studies of substituted piperidine naphthamides. Part II: Influence of the substitution on the benzyl moiety on the affinity for D2L, D4.2, and 5-HT2A receptors. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 1570-1574.	2.2	6
300	Convenient synthesis and in vitro pharmacological activity of 2-thioanalogs of salvinorins A and B. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 2229-2232.	2.2	27
301	Relating protein pharmacology by ligand chemistry. Nature Biotechnology, 2007, 25, 197-206.	17.5	1,722
302	The pipeline and future of drug development in schizophrenia. Molecular Psychiatry, 2007, 12, 904-922.	7.9	173
303	Involvement of AMPA receptor phosphorylation in antidepressant actions with special reference to tianeptine. European Journal of Neuroscience, 2007, 26, 3509-3517.	2.6	116
304	Antinociceptive and Hypothermic Effects of Salvinorin A Are Abolished in a Novel Strain of \hat{I}^2 -Opioid Receptor-1 Knockout Mice. Journal of Pharmacology and Experimental Therapeutics, 2006, 318, 641-648.	2.5	80
305	Developing selectively nonselective drugs for treating CNS disorders. Drug Discovery Today: Therapeutic Strategies, 2006, 3, 413-419.	0.5	4
306	Binding of Sulfonyl-Containing Arylalkylamines at Human 5-HT6Serotonin Receptors. Journal of Medicinal Chemistry, 2006, 49, 5217-5225.	6.4	29

#	Article	IF	CITATIONS
307	Evaluation of the eutomer of 4-{3-(4-chlorophenyl)-3-hydroxypyrrolidin-1-yl}-1-(4-fluorophenyl)butan-1-one, {(+)-SYA 09}, a pyrrolidine analog of haloperidol. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 3219-3223.	2.2	6
308	Binding of methoxy-substituted N1-benzenesulfonylindole analogs at human 5-HT6 serotonin receptors. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 3793-3796.	2.2	12
309	Interaction of N1-unsubstituted and N1-benzenesulfonyltryptamines at h5-HT6 receptors. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 5832-5835.	2.2	14
310	Convergent Synthesis of Complex Diketopiperazines Derived from Pipecolic Acid Scaffolds and Parallel Screening against GPCR Targets. Journal of Organic Chemistry, 2006, 71, 8934-8945.	3.2	31
311	Synthesis and Structureâ^'Activity Relationships of 3-[(2-Methyl-1,3-thiazol-4-yl)ethynyl]pyridine Analogues as Potent, Noncompetitive Metabotropic Glutamate Receptor Subtype 5 Antagonists; Search for Cocaine Medications. Journal of Medicinal Chemistry, 2006, 49, 1080-1100.	6.4	88
312	WAY-100635 is a potent dopamine D4 receptor agonist. Psychopharmacology, 2006, 188, 244-251.	3.1	133
313	Screening the receptorome: an efficient approach for drug discovery and target validation. Drug Discovery Today, 2006, 11, 708-716.	6.4	67
314	Bioisosteric Modification of Salvinorin A, a Potent and Selective Kappa-Opioid Receptor Agonist. Arzneimittelforschung, 2006, 56, 269-275.	0.4	12
315	Evidence for the Preferential Involvement of 5-HT2A Serotonin Receptors in Stress- and Drug-Induced Dopamine Release in the Rat Medial Prefrontal Cortex. Neuropsychopharmacology, 2006, 31, 265-277.	5.4	165
316	Screening the Receptorome Yields Validated Molecular Targets for Drug Discovery. Current Pharmaceutical Design, 2006, 12, 1785-1795.	1.9	15
317	Screening the receptorome. Journal of Psychopharmacology, 2006, 20, 41-46.	4.0	2
318	p90 ribosomal S6 kinase 2 exerts a tonic brake on G protein-coupled receptor signaling. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 4717-4722.	7.1	48
319	Molecular Determinants in the Second Intracellular Loop of the 5-Hydroxytryptamine-1A Receptor for G-Protein Coupling. Molecular Pharmacology, 2006, 69, 1518-1526.	2.3	28
320	Molecular Biology and Genomic Organization of G Protein-Coupled Serotonin Receptors., 2006, , 1-38.		8
321	Structure and Function Reveal Insights in the Pharmacology of 5-HT Receptor Subtypes. , 2006, , 39-58.		3
322	Polymorphic and Posttranscriptional Modifications of 5-HT Receptor Structure. Receptors, 2006, , 59-90.	0.2	3
323	Salvinorin A: From Natural Product to Human Therapeutics. Molecular Interventions: Pharmacological Perspectives From Biology, Chemistry and Genomics, 2006, 6, 257-265.	3.4	77
324	Contributions of molecular biology to antipsychotic drug discovery: promises fulfilled or unfulfilled?. Dialogues in Clinical Neuroscience, 2006, 8, 303-309.	3.7	13

#	Article	IF	Citations
325	5-HT Receptor-Associated Proteins (FRAPs). Receptors, 2006, , 257-276.	0.2	0
326	Agonist induced internalization of G alpha s regulates adenylyl cyclase. FASEB Journal, 2006, 20, A694.	0.5	0
327	Synthesis and receptor assay of aromatic–ethynyl–aromatic derivatives with potent mGluR5 antagonist activity. Bioorganic and Medicinal Chemistry, 2005, 13, 197-209.	3.0	38
328	Functionalization at position 3 of the phenyl ring of the potent mGluR5 noncompetitive antagonists MPEP. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 945-949.	2.2	31
329	1-(1-Naphthyl)piperazine as a novel template for 5-HT6 serotonin receptor ligands. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 1707-1711.	2.2	26
330	Synthesis of potent and selective serotonin 5-HT1B receptor ligands. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 4786-4789.	2.2	11
331	Binding of amine-substituted N1-benzenesulfonylindoles at human 5-HT6 serotonin receptors. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 5298-5302.	2.2	25
332	Finding New Tricks For Old Drugs: An Efficient Route For Public-Sector Drug Discovery. Nature Reviews Drug Discovery, 2005, 4, 1005-1014.	46.4	196
333	Receptor systems: Will mining the receptorome yield novel targets for pharmacotherapy?. , 2005, 108, 59-64.		9
334	Functionalization at Position 3 of the Phenyl Ring of the Potent mGluR5 Noncompetitive Antagonists MPEP ChemInform, 2005, 36, no.	0.0	0
335	1-(1-Naphthyl)piperazine as a Novel Template for 5-HT6 Serotonin Receptor Ligands ChemInform, 2005, 36, no.	0.0	0
336	The highly efficacious actions of N-desmethylclozapine at muscarinic receptors are unique and not a common property of either typical or atypical antipsychotic drugs: is M1 agonism a pre-requisite for mimicking clozapine?s actions?. Psychopharmacology, 2005, 178, 451-460.	3.1	111
337	5-ZATRYPTAMINE ANALOGS AS h5-HT6 SEROTONIN RECEPTOR LIGANDS. Medicinal Chemistry Research, 2005, 14, 1-18.	2.4	7
338	Binding of isotryptamines and indenes at h5-HT6 serotonin receptors. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 1987-1991.	2.2	43
339	Interaction of chiral MS-245 analogs at h5-HT6 receptors. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 3510-3513.	2.2	20
340	SAR of psilocybin analogs: Discovery of a selective 5-HT2C agonist. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 4555-4559.	2.2	59
341	Development of a Rationally Designed, Low Abuse Potential, Biogenic Amine Releaser That Suppresses Cocaine Self-Administration. Journal of Pharmacology and Experimental Therapeutics, 2005, 313, 1361-1369.	2.5	83
342	Molecular Determinants for the Interaction of the Valvulopathic Anorexigen Norfenfluramine with the 5-HT2B Receptor. Molecular Pharmacology, 2005, 68, 20-33.	2.3	73

#	Article	IF	CITATIONS
343	Mining the Receptorome. Journal of Biological Chemistry, 2005, 280, 5129-5132.	3.4	68
344	Fluorinated Diaryl Sulfides as Serotonin Transporter Ligands:Â Synthesis, Structureâ^'Activity Relationship Study, and in Vivo Evaluation of Fluorine-18-Labeled Compounds as PET Imaging Agents. Journal of Medicinal Chemistry, 2005, 48, 2559-2570.	6.4	59
345	Screening the receptorome reveals molecular targets responsible for drug-induced side effects: focus on $\hat{a} \in \mathbb{C}$ phen $\hat{a} \in \mathbb{C}$. Expert Opinion on Drug Metabolism and Toxicology, 2005, 1, 377-387.	3.3	39
346	Studies toward the Pharmacophore of Salvinorin A, a Potent κ Opioid Receptor Agonist. Journal of Medicinal Chemistry, 2005, 48, 345-348.	6.4	110
347	Autoxidation of Salvinorin A under Basic Conditions. Journal of Organic Chemistry, 2005, 70, 10057-10061.	3.2	15
348	Synthesis of a Library of Complex Macrodiolides Employing Cyclodimerization of Hydroxy Esters. ACS Combinatorial Science, 2005, 7, 673-681.	3.3	42
349	Screening the receptorome for plant-based psychoactive compounds. Life Sciences, 2005, 78, 506-511.	4.3	18
350	Nigrostriatal Dopaminergic Deficits and Hypokinesia Caused by Inactivation of the Familial Parkinsonism-Linked Gene DJ-1. Neuron, 2005, 45, 489-496.	8.1	485
351	Synthesis and binding studies of 2-arylapomorphines. Organic and Biomolecular Chemistry, 2005, 3, 4077.	2.8	29
352	Identification of the Molecular Mechanisms by Which the Diterpenoid Salvinorin A Binds to κ-Opioid Receptorsâ€. Biochemistry, 2005, 44, 8643-8651.	2.5	84
353	Fast dissociation rates predict neither efficacy nor lack of side-effects. Nature Reviews Drug Discovery, 2004, 3, 894-894.	46.4	0
354	Molecular and Cellular Mechanisms for the Polarized Sorting of Serotonin Receptors: Relevance for Genesis and Treatment of Psychosis. Critical Reviews in Neurobiology, 2004, 16, 229-236.	3.1	23
355	The Neurotensin Agonist PD149163 Increases Fos Expression in the Prefrontal Cortex of the Rat. Neuropsychopharmacology, 2004, 29, 1878-1888.	5.4	43
356	Caveolin-1 Interacts with 5-HT2A Serotonin Receptors and Profoundly Modulates the Signaling of Selected Gαq-coupled Protein Receptors. Journal of Biological Chemistry, 2004, 279, 34614-34623.	3.4	155
357	Low nNOS protein in the locus coeruleus in major depression. Journal of Neurochemistry, 2004, 91, 1057-1066.	3.9	74
358	Magic shotguns versus magic bullets: selectively non-selective drugs for mood disorders and schizophrenia. Nature Reviews Drug Discovery, 2004, 3, 353-359.	46.4	1,044
359	Screening the receptorome to discover the molecular targets for plant-derived psychoactive compounds: a novel approach for CNS drug discovery. , 2004, 102, 99-110.		92
360	SK&F 83822 distinguishes adenylyl cyclase from phospholipase C-coupled dopamine D1-like receptors: behavioural topography. European Journal of Pharmacology, 2004, 486, 273-280.	3.5	39

#	Article	IF	Citations
361	Serotonin receptors represent highly favorable molecular targets for cognitive enhancement in schizophrenia and other disorders. Psychopharmacology, 2004, 174, 17-24.	3.1	215
362	1,2,3,4-Tetrahydrocarbazoles as 5-HT6 Serotonin Receptor Ligands ChemInform, 2004, 35, no.	0.0	0
363	Structural Determinants for High 5-HT2A Receptor Affinity of Spiro[9,10-dihydroanthracene]-9,3′-pyrrolidine (SpAMDA) ChemInform, 2004, 35, no.	0.0	0
364	1,2,3,4-Tetrahydrocarbazoles as 5-HT6 serotonin receptor ligands. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 1961-1964.	2.2	46
365	Structural determinants for high 5-HT 2A receptor affinity of spiro[9,10-dihydroanthracene]-9,3 ′ -pyrrolidine (SpAMDA). Bioorganic and Medicinal Chemistry Letters, 2004, 14, 2279-2283.	2.2	26
366	Haloperidol: towards further understanding of the structural contributions of its pharmacophoric elements at D2-like receptors. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 5739-5742.	2.2	22
367	Salvinorin A, an Active Component of the Hallucinogenic Sage Salvia divinorum Is a Highly Efficacious $\hat{\mathbb{P}}$ -Opioid Receptor Agonist: Structural and Functional Considerations. Journal of Pharmacology and Experimental Therapeutics, 2004, 308, 1197-1203.	2.5	194
368	The Human Polyomavirus, JCV, Uses Serotonin Receptors to Infect Cells. Science, 2004, 306, 1380-1383.	12.6	417
369	Salvinorin A: A novel and highly selective κ-opioid receptor agonist. Life Sciences, 2004, 75, 2615-2619.	4.3	54
370	Aripiprazole: A Novel Atypical Antipsychotic Drug With a Uniquely Robust Pharmacology. CNS Neuroscience & Therapeutics, 2004, 10, 317-336.	4.0	133
371	In Vitro Characterization of Ephedrine-Related Stereoisomers at Biogenic Amine Transporters and the Receptorome Reveals Selective Actions as Norepinephrine Transporter Substrates. Journal of Pharmacology and Experimental Therapeutics, 2003, 307, 138-145.	2.5	167
372	l-Homocysteine Sulfinic Acid and l-Homocysteic Acid Stimulate Phosphoinositide Hydrolysis in Rat Cortical Neurons. Annals of the New York Academy of Sciences, 2003, 1003, 461-463.	3.8	1
373	IRAS Splice Variants. Annals of the New York Academy of Sciences, 2003, 1009, 419-426.	3.8	9
374	Atypical antipsychotic drug actions: unitary or multiple mechanisms for â€~atypicality'?. Clinical Neuroscience Research, 2003, 3, 108-117.	0.8	73
375	Spiro[9,10-dihydroanthracene]-9,3′-pyrrolidine—a structurally unique tetracyclic 5-HT2A receptor antagonist. European Journal of Pharmacology, 2003, 482, 335-337.	3.5	6
376	Synthesis and in vitro pharmacology of novel heterocyclic muscarinic ligands. Il Farmaco, 2003, 58, 739-748.	0.9	9
377	Ring substituted analogues of 5-aminomethyl-10,11-dihydro-dibenzo[a,d]cycloheptene (AMDH): potential modes of binding to the 5-HT2A receptor. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 2565-2568.	2.2	2
378	N1-Benzenesulfonylgramine and N1-benzenesulfonylskatole: novel 5-HT6 receptor ligand templates. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 3355-3359.	2.2	31

#	Article	IF	CITATIONS
379	Novel Diketopiperazine Enhances Motor and Cognitive Recovery after Traumatic Brain Injury in Rats and Shows Neuroprotection <i>In Vitro</i> and <i>In Vivo</i> Journal of Cerebral Blood Flow and Metabolism, 2003, 23, 342-354.	4.3	72
380	3,4-Methylenedioxymethamphetamine (MDMA, "Ecstasyâ€) Induces Fenfluramine-Like Proliferative Actions on Human Cardiac Valvular Interstitial Cells in Vitro. Molecular Pharmacology, 2003, 63, 1223-1229.	2.3	263
381	H1-Histamine Receptor Affinity Predicts Short-Term Weight Gain for Typical and Atypical Antipsychotic Drugs. Neuropsychopharmacology, 2003, 28, 519-526.	5.4	694
382	The PDZ-binding domain is essential for the dendritic targeting of 5-HT2A serotonin receptors in cortical pyramidal neurons in vitro. Neuroscience, 2003, 122, 907-920.	2.3	71
383	Salvinorin A: the †magic mint†hallucinogen finds a molecular target in the kappa opioid receptor. Trends in Pharmacological Sciences, 2003, 24, 107-109.	8.7	142
384	Identification of Two Serine Residues Essential for Agonist-Induced 5-HT2AReceptor Desensitizationâ€. Biochemistry, 2003, 42, 10853-10862.	2.5	39
385	l-Homocysteine Sulfinic Acid and Other Acidic Homocysteine Derivatives Are Potent and Selective Metabotropic Glutamate Receptor Agonists. Journal of Pharmacology and Experimental Therapeutics, 2003, 305, 131-142.	2.5	101
386	Why Mice Are Neither Miniature Humans nor Small Rats: A Cautionary Tale Involving 5-Hydroxytryptamine-6 Serotonin Receptor Species Variants: Fig. 1 Molecular Pharmacology, 2003, 64, 1277-1278.	2.3	35
387	Parkin-deficient Mice Exhibit Nigrostriatal Deficits but Not Loss of Dopaminergic Neurons. Journal of Biological Chemistry, 2003, 278, 43628-43635.	3.4	784
388	G-protein-coupled receptors at a glance. Journal of Cell Science, 2003, 116, 4867-4869.	2.0	282
389	The Interaction of a Constitutively Active Arrestin with the Arrestin-Insensitive 5-HT2AReceptor Induces Agonist-Independent Internalization. Molecular Pharmacology, 2003, 63, 961-972.	2.3	55
390	Aripiprazole, A Novel Atypical Antipsychotic Drug with a Unique and Robust Pharmacology. Neuropsychopharmacology, 2003, 28, 1400-1411.	5 . 4	848
391	A Direct Interaction of PSD-95 with 5-HT2A Serotonin Receptors Regulates Receptor Trafficking and Signal Transduction. Journal of Biological Chemistry, 2003, 278, 21901-21908.	3.4	152
392	Reply: H1-histamine Receptor Affinity Predicts Short-term Weight Gain for Typical and Atypical Antipsychotic Drugs. Neuropsychopharmacology, 2003, 28, 2210-2211.	5 . 4	5
393	Molecular Biology of Serotonin Receptors - Structure and Function at the Molecular Level. Current Topics in Medicinal Chemistry, 2002, 2, 507-528.	2.1	243
394	CELL BIOLOGY: A Last GASP for GPCRs?. Science, 2002, 297, 529-531.	12.6	32
395	Evidence for a Model of Agonist-induced Activation of 5-Hydroxytryptamine 2A Serotonin Receptors That Involves the Disruption of a Strong Ionic Interaction between Helices 3 and 6. Journal of Biological Chemistry, 2002, 277, 11441-11449.	3.4	161
396	Geometryâ^'Affinity Relationships of the Selective Serotonin Receptor Ligand 9-(Aminomethyl)-9,10-dihydroanthracene. Journal of Medicinal Chemistry, 2002, 45, 1656-1664.	6.4	16

#	Article	IF	Citations
397	Salvinorin A: A potent naturally occurring nonnitrogenous opioid selective agonist. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 11934-11939.	7.1	712
398	Localization of 5-HT2A receptors on dopamine cells in subnuclei of the midbrain A10 cell group. Neuroscience, 2002, 111, 163-176.	2.3	154
399	In vitro receptor screening of pure constituents of St. John's wort reveals novel interactions with a number of GPCRs. Psychopharmacology, 2002, 162, 193-202.	3.1	98
400	Evidence for a model of agonist-induced activation of 5-hydroxytryptamine 2A serotonin receptors that involves the disruption of a strong ionic interaction between helices 3 and 6 Journal of Biological Chemistry, 2002, 277, 18244.	3.4	2
401	Paradoxical trafficking and regulation of 5-HT2A receptors by agonists and antagonists. Brain Research Bulletin, 2001, 56, 441-451.	3.0	262
402	Insights into the structure and function of 5-HT2familyserotonin receptors reveal novel strategies for therapeutic target development. Expert Opinion on Therapeutic Targets, 2001, 5, 685-695.	3.4	33
403	Discovery of a Novel Member of the Histamine Receptor Family. Molecular Pharmacology, 2001, 59, 427-433.	2.3	346
404	Cell-Type Specific Effects of Endocytosis Inhibitors on 5-Hydroxytryptamine _{2A} Receptor Desensitization and Resensitization Reveal an Arrestin-, GRK2-, and GRK5-Independent Mode of Regulation in Human Embryonic Kidney 293 Cells. Molecular Pharmacology, 2001, 60, 1020-1030.	2.3	88
405	Control of Serotonergic Function in Medial Prefrontal Cortex by Serotonin-2A Receptors through a Glutamate-Dependent Mechanism. Journal of Neuroscience, 2001, 21, 9856-9866.	3.6	292
406	The in vitro pharmacology of the \hat{l}^2 -adrenergic receptor pet ligand (s)-fluorocarazolol reveals high affinity for cloned \hat{l}^2 -adrenergic receptors and moderate affinity for the human 5-HT 1A receptor. Psychopharmacology, 2001, 157, 111-114.	3.1	12
407	Exploring the relationship between binding modes of 9-(aminomethyl)-9,10-dihydroanthracene and cyproheptadine analogues at the 5-HT2A serotonin receptor. Bioorganic and Medicinal Chemistry Letters, 2001, 11, 563-566.	2.2	15
408	Influence of chain length and N-alkylation on the selective serotonin receptor ligand 9-(aminomethyl)-9,10-dihydroanthracene. Bioorganic and Medicinal Chemistry Letters, 2001, 11, 655-658.	2.2	19
409	Rational design, synthesis, and biological evaluation of rigid pyrrolidone analogues as potential inhibitors of prostate cancer cell growth. Bioorganic and Medicinal Chemistry Letters, 2001, 11, 955-959.	2.2	33
410	Synthesis of potent and selective dopamine D4 antagonists as candidate radioligands. Bioorganic and Medicinal Chemistry Letters, 2001, 11, 1375-1377.	2.2	10
411	Distribution of serotonin 5-HT2A receptors in afferents of the rat striatum. Synapse, 2001, 39, 297-304.	1.2	62
412	The Dynamin-dependent, Arrestin-independent Internalization of 5-Hydroxytryptamine 2A (5-HT2A) Serotonin Receptors Reveals Differential Sorting of Arrestins and 5-HT2A Receptors during Endocytosis. Journal of Biological Chemistry, 2001, 276, 8269-8277.	3.4	144
413	Agonist high and low affinity state ratios predict drug intrinsic activity and a revised Ternary complex mechanism at serotonin 5-HT2A and 5-HT2C receptors. Synapse, 2000, 35, 144-150.	1.2	71
414	N1-(Benzenesulfonyl)tryptamines as novel 5-HT6 antagonists. Bioorganic and Medicinal Chemistry Letters, 2000, 10, 2295-2299.	2.2	98

#	Article	IF	Citations
415	Differential Modes of Agonist Binding to 5-Hydroxytryptamine _{2A} Serotonin Receptors Revealed by Mutation and Molecular Modeling of Conserved Residues in Transmembrane Region 5. Molecular Pharmacology, 2000, 58, 877-886.	2.3	104
416	Evidence for Possible Involvement of 5-HT ₂₈ Receptors in the Cardiac Valvulopathy Associated With Fenfluramine and Other Serotonergic Medications. Circulation, 2000, 102, 2836-2841.	1.6	659
417	The Multiplicity of Serotonin Receptors: Uselessly Diverse Molecules or an Embarrassment of Riches?. Neuroscientist, 2000, 6, 252-262.	3.5	303
418	2-Substituted Tryptamines:  Agents with Selectivity for 5-HT ₆ Serotonin Receptors. Journal of Medicinal Chemistry, 2000, 43, 1011-1018.	6.4	149
419	Engineering a region of bulk tolerance in the 5-HT2A receptor. European Journal of Medicinal Chemistry, 1999, 34, 441-447.	5.5	20
420	9-(Aminomethyl)-9,10-dihydroanthracene is a novel and unlikely 5-HT2A receptor antagonist. European Journal of Pharmacology, 1999, 380, R5-R7.	3. 5	13
421	What's All the RAVE about Receptor Internalization?. Neuron, 1999, 23, 629-631.	8.1	17
422	Morphometric evidence for neuronal and glial prefrontal cell pathology in major depressionâ [^] —â [^] —See accompanying Editorial, in this issue Biological Psychiatry, 1999, 45, 1085-1098.	1.3	1,395
423	G protein-coupled receptor (GPCR) trafficking in the central nervous system: relevance for drugs of abuse. Drug and Alcohol Dependence, 1998, 51, 73-85.	3.2	55
424	Serotonin 5-HT2A Receptors: Molecular Biology and Mechanisms of Regulation. Critical Reviews in Neurobiology, 1998, 12, 319-338.	3.1	96
425	Binding of Typical and Atypical Antipsychotic Drugs to Multiple Neurotransmitter Receptors. Advances in Pharmacology, 1997, 42, 482-485.	2.0	34
426	Regulation of the internalization of the 5HT2A receptor in vitro. Schizophrenia Research, 1997, 24, 90.	2.0	0
427	Serotonin 5-HT2A receptors are expressed on pyramidal cells and interneurons in the rat cortex. Synapse, 1997, 27, 79-82.	1.2	295
428	Serotonin 5-HT2A receptors are expressed on pyramidal cells and interneurons in the rat cortex., 1997, 27, 79.		1
429	Interactions of selective serotonin reuptake inhibitors with the serotonin 5-HT2C receptor. Psychopharmacology, 1996, 126, 234-240.	3.1	185
430	Cloning, Characterization, and Chromosomal Localization of a Human 5â€HT ₆ Serotonin Receptor. Journal of Neurochemistry, 1996, 66, 47-56.	3.9	329
431	Atypical Antipsychotic Drugs: Clinical and Preclinical Studies. Handbook of Experimental Pharmacology, 1996, , 77-115.	1.8	7
432	1-(2,5-Dimethoxy-4-(trifluoromethyl)phenyl)-2-aminopropane: A Potent Serotonin 5-HT2A/2C Agonist. Journal of Medicinal Chemistry, 1994, 37, 4346-4351.	6.4	64

#	Article	IF	CITATIONS
433	Effect of the R(â^') and S(+) isomers of MDA and MDMA on phosphotidyl inositol turnover in cultured cells expressing 5-HT2A or 5-HT2C receptors. Neuroscience Letters, 1994, 177, 111-115.	2.1	63
434	Multiple Serotonin Receptors: Clinical and Experimental Aspects. Annals of Clinical Psychiatry, 1994, 6, 67-78.	0.6	190
435	Production and characterization of a specific 5-HT2 receptor antibody. Brain Research, 1993, 615, 113-120.	2.2	32
436	Developmental regulation of 5-HT2 and 5-HT1C mRNA and receptor levels. Developmental Brain Research, 1991, 58, 51-58.	1.7	110
437	Chronic mianserin treatment decreases 5-HT2 receptor binding without altering 5-HT2 receptor mRNA levels. European Journal of Pharmacology, 1991, 207, 169-172.	2.6	66
438	A structure-affinity study of the binding of 4-substituted analogs of 1-(2,5-dimethoxyphenyl)-2-aminopropane at 5-HT2 serotonin receptors. Journal of Medicinal Chemistry, 1990, 33, 1032-1036.	6.4	52
439	Role of Phosphoinositide Hydrolysis and Protein Kinase C Activation in 5HT 2 Receptor Function in Smooth Muscle., 1990,, 33-37.		0
440	Rat Brain Protein Kinase C: Purification, Antibody Production, and Quantification in Discrete Regions of Hippocampus. Journal of Neurochemistry, 1989, 52, 215-221.	3.9	48
441	Immunohistochemical distribution of \hat{l}^2 -protein kinase C in rat hippocampus determined with an antibody against a synthetic peptide sequence. Brain Research Bulletin, 1989, 22, 893-897.	3.0	6
442	NOREPINEPHRINE INCREASES PRODUCTION OF A NUCLEAR MESSAGE IN VASCULAR TISSUE. Critical Care Medicine, $1988,16,402.$	0.9	0
443	A BIOCHEMICAL MECHANISM FOR VASODILATION IN SEPTIC SHOCK. Critical Care Medicine, 1987, 15, 440.	0.9	7
444	Elevation of arterial pressure in rats by two new vertebrate peptides FLF QPQRF-NH2 and AGE GLSSPFWSLAAPQRF-NH2 which are immunoreactive to FMRF-NH2 antiserum. Neuropeptides, 1987, 10, 37-42.	2.2	104
445	Prostaglandins activate phosphoinositide metabolism in rat aorta. European Journal of Pharmacology, 1987, 136, 325-332.	3.5	32
446	Effects of a phorbol ester on rat aortic contraction and calcium influx in the presence and absence of BAY k 8644. European Journal of Pharmacology, 1987, 144, 185-191.	3.5	36
447	Modulation of phosphatidylinositol-4, 5-bisphosphate hydrolysis in rat aorta by guanine nucleotides, calcium and magnesium. Life Sciences, 1987, 41, 629-634.	4.3	25
448	Multiple mechanisms of serotonergic signal transduction. Life Sciences, 1987, 41, 1051-1064.	4.3	120
449	Characterization of Two [3H]Ketanserin Recognition Sites in Rat Striatum. Journal of Neurochemistry, 1987, 49, 1833-1838.	3.9	67
450	BAY k 8644, a calcium channel agonist, reverses hypotension in endotoxin-shocked rats. European Journal of Pharmacology, 1986, 130, 169-175.	3.5	14

#	Article	IF	Citations
451	Phorbol esters inhibit alpha 1-adrenergic receptor-stimulated phosphoinositide hydrolysis and contraction in rat aorta: Evidence for a link between vascular contraction and phosphoinositide turnover. Biochemical and Biophysical Research Communications, 1986, 134, 970-974.	2.1	53
452	5-Hydroxytryptamine Uptake and Imipramine Binding Sites in Neurotumor NCB-20 Cells. Journal of Neurochemistry, 1985, 45, 920-925.	3.9	9
453	Stereospecific opiate-binding sites occur in coated vesicles. Journal of Neuroscience, 1985, 5, 3010-3015.	3.6	36
454	The postnatal development of VIP binding sites in rat forebrain and hindbrain. Peptides, 1985, 6, 27-30.	2.4	27
455	Microsomal Opiate Receptors: Characterization of Smooth Microsomal and Synaptic Membrane Opiate Receptors. Journal of Neurochemistry, 1984, 42, 1677-1684.	3.9	30
456	Aortic recognition sites for serotonin (5HT) are coupled to phospholipase C and modulate phosphatidylinositol turnover. Neuropharmacology, 1984, 23, 1223-1225.	4.1	135
457	A Slowly Dissociating form of Bovine Hippocampal Synaptic Membrane Opiate Receptors. , 1984, , 489-492.		O
458	Ontogeny of benzomorphan-selective (κ) sites: A computerized analysis. Life Sciences, 1983, 33, 235-238.	4.3	13
459	Differential postnatal development of mu and delta opiate receptors. Developmental Brain Research, 1982, 3, 679-684.	1.7	122
460	Microsomal opiate receptors differ from synaptic membrane receptors in proteolytic sensitivity. Brain Research, 1982, 250, 101-109.	2.2	16
461	Demonstration of a slowly dissociating form of bovine hippocampal synaptic membrane opiate receptors. European Journal of Pharmacology, 1982, 83, 47-53.	3.5	14
462	The effects of tetrahydroisoquinolinecarboxylic acids on tyrosine 3-monooxygenase. Archives of Biochemistry and Biophysics, 1981, 209, 620-627.	3.0	9
463	The effects of morphine on catecholamine metabolism during postnatal development. Brain Research, 1980, 197, 561-564.	2.2	21
464	5-Hydroxytryptamine receptor 2A. The AFCS-nature Molecule Pages, 0, , .	0.2	0