Vladimir Damjanović

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2663049/publications.pdf

Version: 2024-02-01

840776 794594 29 371 11 19 citations g-index h-index papers 29 29 29 400 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Molybdenum-, Vanadium-, and Tungsten-Containing Materials for Catalytic Applications. Materials, 2022, 15, 1720.	2.9	0
2	Redistribution of gangliosides accompanies thermally induced Na+, K+-ATPase activity alternation and submembrane localisation in mouse brain. Biochimica Et Biophysica Acta - Biomembranes, 2021, 1863, 183475.	2.6	4
3	Who's in, who's out? Reâ€evaluation of lipid raft residents. Journal of Neurochemistry, 2021, 158, 657-672.	3.9	8
4	The role of mono- and dicarboxylic acids in the building of oxomolybdates containing {MoO ₄ }, {Mo ₂ O ₅ }, {Mo ₂ O ₆ }, {Mo ₅ O ₁₇ }, {Mo ₅ }, {Mo ₅ O ₁₇ }, {Mo ₅ O ₁₈ }, {Mo ₅ O ₁₈ }, {Mo ₈ O ₁₈ }, {Mo ₈ O ₁₈ }, {Mo ₁₉ }, {Mo _{19<td>2.8</td><td>1</td>}	2.8	1
5	Effective methods for the synthesis of hydrazones, quinazolines, and Schiff bases: reaction monitoring using a chemometric approach. RSC Advances, 2020, 10, 38566-38577.	3.6	15
6	Novel Insights into the Thioesterolytic Activity of N-Substituted Pyridinium-4-oximes. Molecules, 2020, 25, 2385.	3.8	2
7	Coordinating and supramolecular prospects of unsymmetrically substituted carbohydrazides. New Journal of Chemistry, 2020, 44, 13357-13367.	2.8	3
8	Discrete and polymeric ensembles based on dinuclear molybdenum(<scp>vi</scp>) building blocks with adaptive carbohydrazide ligands: from the design to catalytic epoxidation. New Journal of Chemistry, 2020, 44, 8085-8097.	2.8	9
9	Directing role of the synthetic route on the self-assembly process of MoO42â^' units to Mo7O242â^' or Mo22O7416â^' ions. Inorganica Chimica Acta, 2020, 510, 119765.	2.4	3
10	Hydrothermal Reactions of [Co ^{III} (C ₂ O ₄)(NH ₃) ₄] ⁺ and Polyoxomolybdates: Depolymerization of Polyoxomolybdates and in Situ Reduction of Cobalt. Crystal Growth and Design, 2019, 19, 6763-6773.	3.0	6
11	Discrete mononuclear and dinuclear compounds containing a MoO ₂ ²⁺ core and 4-aminobenshydrazone ligands: synthesis, structure and organic-solvent-free epoxidation activity. New Journal of Chemistry, 2019, 43: 1791-1802. The synthesis, structure and catalytic properties of the	2.8	26
12	[Mo ₇ O ₂₄ (μ-Mo ₈ O ₂₆)Mo ₇ O ₂₄] <formed<i>viatwo intermediate heptamolybdates [Co(en)₃]₂[NaMo₇O₂₄]Cl·<i>n</i>H₂O and</formed<i>	sup>16â^ 3 . 3	'anioi 12
13	(Hysub) 3 (Isub) 0) [Co/en) (sub) 3 (Isub) 1 (sub) 2 (Isub) 7 (Isub) 0 (sub) 24 (Isub) 1 (IÂ.9H (sub) 2 (Isub) 0 (Isub) 0 (Isub) 24 (Isub) 1 (IÂ.9H (sub) 2 (Isub) 2 (Isub) 0 (Isub) 1 (Isub) 2 (Isub) 2 (Isub) 2 (Isub) 3 (Isub) 2 (Isub) 3 (Isub) 2 (Isub) 3 (Isub) 2 (Isub) 2 (Isub) 3 (Isub) 2 (Isub) 2 (Isub) 2 (Isub) 3 (Isub) 2 (Isub) 2 (Isub) 2 (Isub) 2 (Isub) 3 (Isub) 3 (Isub) 4 (Isub) 6 (Isub) 6 (Isub) 6 (Isub) 7	2.8	29
14	Geometrically Constrained Molybdenum(VI) Metallosupramolecular Architectures: Conventional Synthesis versus Vapor and Thermally Induced Solid-State Structural Transformations. Crystal Growth and Design, 2019, 19, 3000-3011.	3.0	13
15	Marking a Century of the Department of Chemistry and Biochemistry at School of Medicine in Zagreb. Croatica Chemica Acta, 2019, 92, 435-442.	0.4	0
16	Mechanochemical synthesis of (poly)oxalatomolybdates: In situ reaction monitoring by PXRD. Inorganica Chimica Acta, 2019, 488, 80-85.	2.4	3
17	Symmetrical disubstituted carbohydrazides: From solid-state structures to cytotoxic and antibacterial activity. Journal of Molecular Structure, 2019, 1178, 222-228.	3.6	5
18	Design of mononuclear, binuclear and polynuclear molybdenum(VI) complexes based on ONO benzoylacetone derived enaminones and their in vitro biological activity. Polyhedron, 2018, 145, 70-79.	2.2	16

#	Article	IF	CITATIONS
19	Comparative studies on conventional and solvent-free synthesis toward hydrazones: application of PXRD and chemometric data analysis in mechanochemical reaction monitoring. CrystEngComm, 2018, 20, 1804-1817.	2.6	13
20	Novel enaminones as non-cytotoxic compounds with mild antibacterial activity: Synthesis and structure-activity correlations. Journal of Molecular Structure, 2018, 1154, 636-642.	3.6	10
21	Copper(<scp>ii</scp>) complexes with benzhydrazone-related ligands: synthesis, structural studies and cytotoxicity assay. New Journal of Chemistry, 2017, 41, 2425-2435.	2.8	29
22	Fran Bubanović: The Visionary of Medical Chemistry and Biochemistry in Croatia. Croatica Chemica Acta, 2017, 90, .	0.4	0
23	Dioxomolybdenum(<scp>vi</scp>) and dioxotungsten(<scp>vi</scp>) complexes chelated with the ONO tridentate hydrazone ligand: synthesis, structure and catalytic epoxidation activity. New Journal of Chemistry, 2014, 38, 6176-6185.	2.8	51
24	Pyridoxal hydrazonato molybdenum(<scp>vi</scp>) complexes: assembly, structure and epoxidation (pre)catalyst testing under solvent-free conditions. RSC Advances, 2014, 4, 39000.	3.6	32
25	Spectroscopic and structural insights into N-substituted pyridinium-4-aldoximes and their pentacyanoferrate(II) complexes. Polyhedron, 2013, 52, 733-742.	2.2	4
26	Spectroscopic Studies of Methimazole Reactivity toward the Aquapentacyanoferrate (II) Ion in Aqueous Solutions. Spectroscopy, 2012, 27, 509-514.	0.8	3
27	The structures and stabilities of biologically active 1-phenacyl- and 1-benzoylethyl-derivatives of the pyridinium cation. Journal of Molecular Structure, 2012, 1019, 196-205.	3.6	3
28	Supramolecular Hexagon and Chain Coordination Polymer Containing the MoO ₂ ²⁺ Core: Structural Transformation in the Solid State. Crystal Growth and Design, 2011, 11, 1244-1252.	3.0	47
29	Hybrid organic–inorganic compounds based on the Lindqvist polyoxomolybdate and dioxomolybdenum(vi) complexes. CrystEngComm, 2011, 13, 4382.	2.6	24