Pawel Bilski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2662880/publications.pdf

Version: 2024-02-01

224 papers 4,033 citations

30 h-index 223531 46 g-index

227 all docs

227 docs citations

times ranked

227

2218 citing authors

#	Article	IF	CITATIONS
1	GlowFit—a new tool for thermoluminescence glow-curve deconvolution. Radiation Measurements, 2006, 41, 659-664.	0.7	230
2	Lithium Fluoride: From LiF:Mg,Ti to LiF:Mg,Cu,P. Radiation Protection Dosimetry, 2002, 100, 199-205.	0.4	117
3	Astronaut's Organ Doses Inferred from Measurements in a Human Phantom Outside the International Space Station. Radiation Research, 2009, 171, 225-235.	0.7	116
4	Mn-doped YAlO3 crystal: a new potential TLD phosphor. Nuclear Instruments & Methods in Physics Research B, 2005, 227, 545-550.	0.6	74
5	The new EYE-Dâ,,¢ dosemeter for measurements of HP(3) for medical staff. Radiation Measurements, 2011, 46, 1239-1242.	0.7	71
6	Retrospective radiation dosimetry using OSL of electronic components: Results of an inter-laboratory comparison. Radiation Measurements, 2014, 71, 475-479.	0.7	70
7	Thermoluminescence Efficiency of LiF:Mg,Cu,P (MCP-N) Detectors to Photons, Beta-Electrons, Alpha Particles and Thermal Neutrons. Radiation Protection Dosimetry, 1994, 55, 31-38.	0.4	64
8	Characteristics of LiF:Mg,Cu,P thermoluminescence at ultra-high dose range. Radiation Measurements, 2008, 43, 315-318.	0.7	58
9	A new cylindrical phantom for eye lens dosimetry development. Radiation Measurements, 2011, 46, 1231-1234.	0.7	53
10	Aluminum and Gallium Substitution in Yttrium and Lutetium Aluminum–Gallium Garnets: Investigation by Single-Crystal NMR and TSL Methods. Journal of Physical Chemistry C, 2016, 120, 24400-24408.	1.5	51
11	DOSIS & DOSIS 3D: long-term dose monitoring onboard the Columbus Laboratory of the International Space Station (ISS). Journal of Space Weather and Space Climate, 2016, 6, A39.	1.1	49
12	Cosmic Radiation Exposure of Biological Test Systems During the EXPOSE-E Mission. Astrobiology, 2012, 12, 387-392.	1.5	46
13	Comparison of commercial thermoluminescent readers regarding high-dose high-temperature measurements. Radiation Measurements, 2014, 65, 8-13.	0.7	46
14	DOSIS & DOSIS 3D: radiation measurements with the DOSTEL instruments onboard the Columbus Laboratory of the ISS in the years 2009–2016. Journal of Space Weather and Space Climate, 2017, 7, A8.	1.1	44
15	Microdosimetric Interpretation of the Photon Energy Response of LiF:Mg,Ti Detectors. Radiation Protection Dosimetry, 2002, 100, 119-122.	0.4	41
16	Characterization of YAlO3:Mn2+ thermoluminescent detectors. Radiation Measurements, 2010, 45, 516-518.	0.7	41
17	High-perfomance Ce-doped multicomponent garnet single crystalline film scintillators. Physica Status Solidi - Rapid Research Letters, 2015, 9, 489-493.	1.2	41
18	Response of various LiF thermoluminescent detectors to high energy ions – Results of the ICCHIBAN experiment. Nuclear Instruments & Methods in Physics Research B, 2006, 251, 121-126.	0.6	40

#	Article	IF	CITATIONS
19	The MATROSHKA Experiment: Results and Comparison from Extravehicular Activity (MTR-1) and Intravehicular Activity (MTR-2A/2B) Exposure. Radiation Research, 2013, 180, 622-637.	0.7	39
20	Dependence of LiF:Mg,Cu,P (MCP-N) Glow-Curve Structure on Dopant Composition and Thermal Treatment. Radiation Protection Dosimetry, 1997, 69, 187-198.	0.4	38
21	Method of thermoluminescent measurement of radiation doses from micrograys up to a megagray with a single LiF:Mg,Cu,P detector. Radiation Protection Dosimetry, 2011, 144, 543-547.	0.4	38
22	Behaviour of LiF:Mg,Cu,P and LiF:Mg,Ti thermoluminescent detectors for electron doses up to 1MGy. Radiation Measurements, 2010, 45, 576-578.	0.7	37
23	Aliphatic–aromatic poly(azomethine)s with ester groups as thermotropic materials for opto(electronic) applications. Synthetic Metals, 2010, 160, 1856-1867.	2.1	37
24	Ultra-thin LiF:Mg,Cu,P detectors for beta dosimetry. Radiation Measurements, 1995, 24, 439-443.	0.7	35
25	Peculiarities of luminescent and scintillation properties of YAG:Ce phosphor prepared in different crystalline forms. Optical Materials, 2012, 34, 1314-1319.	1.7	35
26	Fluorescent detection of single tracks of alpha particles using lithium fluoride crystals. Nuclear Instruments & Methods in Physics Research B, 2017, 392, 41-45.	0.6	35
27	Microdosimetric Interpretation of the Anomalous Photon Energy Response of Ultra-Sensitive LiF:Mg,Cu,P TL Dosemeters. Radiation Protection Dosimetry, 1993, 47, 31-35.	0.4	34
28	A Systematic Evaluation of The Dependence of Glow Curve Structure on the Concentration of Dopants in LiF:Mg,Cu,P. Radiation Protection Dosimetry, 1996, 65, 195-198.	0.4	33
29	Development of a Method for Passive Measurement of Radiation Doses at Ultra-High Dose Range. IEEE Transactions on Nuclear Science, 2009, 56, 3759-3763.	1.2	31
30	Thermoluminescence and optically stimulated luminescence studies on LiMgPO4 crystallized by micro pulling down technique. Radiation Measurements, 2016, 85, 88-92.	0.7	31
31	A simplified numerical approach to non-radiation induced high-temperature signals in thermoluminescence. GlowVIEW – a useful tool for a multiple glow-curve analysis. Radiation Measurements, 2017, 107, 102-110.	0.7	31
32	Growth and luminescent properties of scintillators based on the single crystalline films of Lu3â°xGdxAl5O12:Ce garnet. Materials Research Bulletin, 2015, 64, 355-363.	2.7	30
33	Investigations of OSL properties of LiMgPO4:Tb,B based dosimeters. Radiation Measurements, 2016, 90, 265-268.	0.7	30
34	Thermal, optical, electrical and structural study of new symmetrical azomethine based on poly(1,4-butanediol)bis(4-aminobenzoate). Journal of Molecular Structure, 2010, 963, 175-182.	1.8	29
35	On the relationship between dose-, energy- and LET-response of thermoluminescent detectors. Radiation Protection Dosimetry, 2006, 119, 15-22.	0.4	28
36	Application of different TL detectors for the photon dosimetry in mixed radiation fields used for BNCT. Radiation Protection Dosimetry, 2006, 120, 83-86.	0.4	28

#	Article	IF	Citations
37	Influence of concentration of magnesium on the dose response and LET-dependence of TL efficiency in LiF:Mg,Cu,P (MCP-N) detectors. Radiation Measurements, 1998, 29, 355-359.	0.7	27
38	LiF:Mg,Ti (MTT) TL Detectors optimised for high-LET radiation dosimetry. Radiation Measurements, 2004, 38, 427-430.	0.7	27
39	Sensitivity loss and recovery for individual TL peaks in LiF:Mg,Ti and LiF:Mg,Cu,P after high-dose irradiation. Radiation Measurements, 2008, 43, 357-360.	0.7	27
40	Relative efficiency of TL detectors to energetic ion beams. Radiation Measurements, 2010, 45, 1495-1498.	0.7	27
41	Scintillating screens based on the LPE grown Tb 3 Al 5 O 12 :Ce single crystalline films. Optical Materials, 2017, 65, 73-81.	1.7	27
42	Thermoluminescence Enhancement of LiMgPO4 Crystal Host by Tb3+ and Tm3+ Trivalent Rare-Earth Ions Co-doping. Materials, 2019, 12, 2861.	1.3	27
43	Thermoluminescence emission characteristics of LiF(Mg,Cu,P) with different dopant concentrations. Radiation Measurements, 1995, 24, 411-416.	0.7	26
44	High-dose characterization of different LiF phosphors. Radiation Measurements, 2007, 42, 582-585.	0.7	26
45	Characterization, liquid crystalline behavior, electrochemical and optoelectrical properties of new poly(azomethine)s and a poly(imide) with siloxane linkages. Optical Materials, 2011, 34, 61-74.	1.7	26
46	Eye lens dosimetry: task 2 within the ORAMED project. Radiation Protection Dosimetry, 2011, 144, 473-477.	0.4	26
47	Investigation of thermoluminescence properties of mobile phone screen displays as dosimeters for accidental dosimetry. Radiation Physics and Chemistry, 2014, 104, 88-92.	1.4	26
48	Dosimetry of densely ionising radiation with three LiF phosphors for space applications. Radiation Protection Dosimetry, 2006, 120, 397-400.	0.4	25
49	The response of different types of TL lithium fluoride detectors to high-energy mixed radiation fields. Radiation Measurements, 2008, 43, 1144-1148.	0.7	25
50	OSL signal of lithium fluoride and its relationship with TL glow-curves. Radiation Measurements, 2014, 71, 61-64.	0.7	25
51	Investigation of OSL signal of resistors from mobile phones for accidental dosimetry. Radiation Measurements, 2014, 71, 466-470.	0.7	25
52	Growth and luminescent properties of scintillators based on the single crystalline films of (Lu,Gd)3(Al,Ga)5O12:Ce garnets. Journal of Luminescence, 2016, 169, 828-837.	1.5	25
53	Comparative studies on OSL properties of LiMgPO4:Tb,B powders and crystals. Radiation Measurements, 2017, 106, 94-99.	0.7	25
54	Modeling the Response of Thermoluminescence Detectors Exposed to Low- and High-LET Radiation Fields. Journal of Radiation Research, 2002, 43, S59-S62.	0.8	24

#	Article	IF	Citations
55	Response of various types of lithium fluoride MCP detectors to high and ultra-high thermal neutron doses. Radiation Measurements, 2011, 46, 1882-1885.	0.7	24
56	Analysis of TL and OSL kinetics of lithium aluminate. Radiation Measurements, 2014, 71, 143-147.	0.7	24
57	Properties of lithium aluminate for application as an OSL dosimeter. Radiation Physics and Chemistry, 2014, 104, 76-79.	1.4	24
58	Characterization of the Ris \tilde{A}_s TL/OSL DA-20 reader for application in TL dosimetry. Radiation Measurements, 2015, 74, 1-5.	0.7	24
59	Modelling of the Thermoluminescence Response of LiF:Mg,Cu,P (MCP-N) Detectors after Doses of Low-Energy Photons. Radiation Protection Dosimetry, 1999, 84, 103-107.	0.4	23
60	Comparative investigations of the relative thermoluminescent efficiency of LiF detectors to protons at different proton therapy facilities. Radiation Measurements, 2015, 82, 8-13.	0.7	23
61	Thermoluminescent response of differently doped lithium magnesium phosphate (LiMgPO4, LMP) crystals to protons, neutrons and alpha particles. Radiation Measurements, 2018, 113, 14-19.	0.7	23
62	The response of TL lithium fluoride detectors to 24ÂGeV/c protons for doses ranging up to 1ÂMGy. Radiation Measurements, 2010, 45, 643-645.	0.7	22
63	Liquid-crystalline phases formed by symmetrical azines with different terminal chains: Thermal, optical and electrical study. Synthetic Metals, 2010, 160, 859-865.	2.1	22
64	Comparison of the response of various TLDs to cosmic radiation and ion beams: Current results of the HAMLET project. Radiation Measurements, 2011, 46, 1680-1685.	0.7	22
65	TL, OSL and RL emission spectra of RE-doped LiMgPO4 crystals. Journal of Luminescence, 2020, 218, 116839.	1.5	22
66	Dosimetric Characteristics of LiF:Mg,Cu,P Phosphors - A Track Structure Interpretation. Radiation Protection Dosimetry, 1993, 47, 53-58.	0.4	21
67	Thermoluminescence measurements of neutron streaming through JET Torus Hall ducts. Fusion Engineering and Design, 2014, 89, 2235-2240.	1.0	21
68	Analysis of TL and OSL kinetics in lithium magnesium phosphate crystals. Radiation Measurements, 2017, 106, 100-106.	0.7	21
69	Thermoluminescence Properties of LiF(Mg,Cu,P) with Different Cu Concentrations. Radiation Protection Dosimetry, 1996, 65, 199-202.	0.4	20
70	Investigation of Efficiency of Thermoluminescence Detectors for Particle Therapy Beams. Radiation Protection Dosimetry, 1997, 70, 501-504.	0.4	20
71	Two-dimensional thermoluminescence dosimetry using planar detectors and a TL reader with CCD camera readout. Radiation Protection Dosimetry, 2006, 120, 129-132.	0.4	20
72	New OSL detectors based on LiMgPO4 crystals grown by micro pulling down method. Dosimetric properties vs. growth parameters. Radiation Measurements, 2016, 90, 303-307.	0.7	20

#	Article	IF	CITATIONS
73	Fluorescent imaging of heavy charged particle tracks with LiF single crystals. Journal of Luminescence, 2019, 213, 82-87.	1.5	20
74	Validation of modelling the radiation exposure due to solar particle events at aircraft altitudes. Radiation Protection Dosimetry, 2008, 131, 51-58.	0.4	19
75	Alpha particle and proton relative thermoluminescence efficiencies in LiF:Mg,Cu,P:is track structure theory up to the task?. Radiation Protection Dosimetry, 2012, 150, 359-374.	0.4	19
76	On LiF:Mg,Cu,P and LiF:Mg,Ti phosphors high & LiF:Mg, Ultra-high dose features. Radiation Measurements, 2014, 71, 25-30.	0.7	19
77	Two-dimensional radiation dosimetry based on LiMgPO4 powder embedded into silicone elastomer matrix. Radiation Measurements, 2020, 133, 106255.	0.7	19
78	TL Emission Spectra from Differently Doped LiF:Mg Detectors. Radiation Protection Dosimetry, 2002, 100, 451-454.	0.4	18
79	Spectrally resolved thermoluminescence of highly irradiated LiF:Mg,Cu,P detectors. Radiation Measurements, 2010, 45, 579-582.	0.7	18
80	Epitaxial Growth of LuAG:Ce and LuAG:Ce,Pr Films and Their Scintillation Properties. IEEE Transactions on Nuclear Science, 2016, 63, 1726-1732.	1.2	18
81	Intrinsic and defect-related luminescence of YAlO3 and LuAlO3 single crystals and films. Optical Materials, 2018, 86, 376-381.	1.7	18
82	The effect of CeO2 on the thermal stability, structure and thermoluminescence and optically stimulated luminescence properties of barium borate glass. Journal of Non-Crystalline Solids, 2019, 517, 61-69.	1.5	18
83	Self-attenuation of TL light from LiF—a comparison of different experimental methods. Radiation Measurements, 2001, 33, 679-685.	0.7	17
84	Measurement of 2-D dose distributions by large-area thermoluminescent detectors. Radiation Measurements, 2004, 38, 833-837.	0.7	17
85	On the correctness of the thermoluminescent high-temperature ratio (HTR) method for estimating ionization density effects in mixed radiation fields. Radiation Measurements, 2010, 45, 42-50.	0.7	17
86	Photoluminescence measurements of LiF TL detectors. Radiation Measurements, 2013, 56, 209-212.	0.7	17
87	Supralinearity of peak 4 and 5 in thermoluminescent lithium fluoride MTS-N () detectors at different Mg and Ti concentration. Radiation Measurements, 2001, 33, 807-812.	0.7	16
88	A Study of the Thermoluminescent Properties of CVD Diamond Detectors. Physica Status Solidi A, 2002, 193, 470-475.	1.7	16
89	LITHIUM FLUORIDE CRYSTALS AS FLUORESCENT NUCLEAR TRACK DETECTORS. Radiation Protection Dosimetry, 2018, 178, 337-340.	0.4	16
90	Detection of neutrons with LiF fluorescent nuclear track detectors. Radiation Measurements, 2018, 116, 35-39.	0.7	16

#	Article	IF	Citations
91	A new approach to the 2D radiation dosimetry based on optically stimulated luminescence of LiF:Mg,Cu,P. Radiation Measurements, 2020, 133, 106293.	0.7	16
92	Application of Individually Calibrated Solid LiF,Ti (MTS-N) Detectors in Clinical Dosimetry. Radiation Protection Dosimetry, 1999, 85, 377-380.	0.4	15
93	Evaluation of the relative thermoluminescence efficiency of LiF:Mg,Ti and LiF:Mg,Cu,P TL detectors to low-energy heavy ions. Radiation Measurements, 2013, 51-52, 7-12.	0.7	15
94	Spectral characteristic of high-dose high-temperature emission from LiF:Mg,Cu,P (MCP-N) TL detectors. Radiation Measurements, 2013, 53-54, 22-30.	0.7	15
95	NUNDO: a numerical model of a human torso phantom and its application to effective dose equivalent calculations for astronauts at the ISS. Radiation and Environmental Biophysics, 2014, 53, 719-727.	0.6	15
96	Radio-photoluminescence of highly irradiated Lif:Mg,Ti and Lif:Mg,Cu,P detectors. Radiation Measurements, 2014, 71, 31-35.	0.7	15
97	Optically stimulated luminescence of LiF:Mg,Cu,P with different dopant concentrations. Radiation Measurements, 2019, 123, 58-62.	0.7	15
98	The effect of lithium fluoride on the thermal stability and thermoluminescence properties of borosilicate glass and glass-ceramics. Journal of the European Ceramic Society, 2020, 40, 472-479.	2.8	15
99	Dosimetry properties of Tm-doped single CaF2 crystals. Radiation Measurements, 2001, 33, 571-576.	0.7	14
100	An improved method of estimating ionisation density using TLDs. Radiation Measurements, 2008, 43, 679-682.	0.7	14
101	OSL dosimetric properties of cerium doped lutetium orthosilicates. Radiation Measurements, 2014, 71, 139-142.	0.7	14
102	Cosmic radiation exposure of biological test systems during the EXPOSE-R mission. International Journal of Astrobiology, 2015, 14, 27-32.	0.9	14
103	OSL signal of IC chips from mobile phones for dose assessment in accidental dosimetry. Radiation Measurements, 2017, 98, 1-9.	0.7	14
104	Radiophotoluminescence spectra of lithium fluoride TLDs after exposures to different radiation modalities. Radiation Measurements, 2017, 97, 14-19.	0.7	14
105	OSL and RL of LiMgPO4 crystals doped with rare earth elements. Radiation Measurements, 2019, 129, 106205.	0.7	14
106	LPE Growth of Single Crystalline Film Scintillators Based on Ce3+ Doped Tb3â^'xGdxAl5â^'yGayO12 Mixed Garnets. Crystals, 2017, 7, 262.	1.0	13
107	Microdosimetric Analysis of the Response of LiF Thermoluminescent Detectors for Radiations of Different Qualities. Radiation Protection Dosimetry, 1994, 52, 405-408.	0.4	13
108	Properties of Different Thin-Layer LiF:Mg,Cu,P TL Detectors for Beta Dosimetry. Radiation Protection Dosimetry, 1996, 66, 101-104.	0.4	12

#	Article	IF	CITATIONS
109	Dosimetry of low-energy protons and light ions. Physics in Medicine and Biology, 2001, 46, 473-485.	1.6	12
110	Thermoluminescence glow peak parameters for LiF:Mg,Ti with modified activator concentration. Radiation Measurements, 2007, 42, 601-604.	0.7	12
111	Composition engineering of single crystalline films based on the multicomponent garnet compounds. Optical Materials, 2016, 61, 3-10.	1.7	12
112	Optical and thermal pre-readout treatments to reduce the influence of fading on LiMgPO4 OSL measurements. Applied Radiation and Isotopes, 2018, 136, 118-120.	0.7	12
113	Luminescent properties of undoped and Ce3+ doped crystals in Y2O3 Lu2O3 Al2O3 triple oxide system grown by micro-pulling-down method. Optical Materials, 2019, 89, 408-413.	1.7	12
114	Composition engineering of Tb3-xGdxAl5-yGayO12:Ce single crystals and their luminescent, scintillation and photoconversion properties. Journal of Alloys and Compounds, 2020, 849, 155808.	2.8	12
115	Intrinsic and Dopant-Related Luminescence of Undoped and Tb Plus Tm Double-Doped Lithium Magnesium Phosphate (LiMgPO4, LMP) Crystals. Materials, 2020, 13, 2032.	1.3	12
116	Composite Detectors Based on Single-Crystalline Films and Single Crystals of Garnet Compounds. Materials, 2022, 15, 1249.	1.3	12
117	Comparison of LiF:Mg,Cu,P. (MCP-N, GR-200A) and Alpha-Al203:C TL Detectors in Short-Term Measurements of Natural Radiation. Radiation Protection Dosimetry, 1996, 66, 157-160.	0.4	11
118	Dosimetric properties of sintered TL detectors. Radiation Measurements, 2001, 33, 537-540.	0.7	11
119	Influence of UV Light on the Thermoluminescence of CVD Diamond Detectors Irradiated by Ionizing Radiation. Physica Status Solidi A, 2001, 185, 183-189.	1.7	11
120	Investigation of Radiation Doses in Open Space using TLD Detectors. Radiation Protection Dosimetry, 2002, 100, 533-536.	0.4	11
121	CVD diamond wafers as large-area thermoluminescence detectors for measuring the spatial distribution of dose. Physica Status Solidi A, 2003, 199, 119-124.	1.7	11
122	Measurements and Monte Carlo simulations of the response of the RADOS personal dosemeters with MTS-N (LiF:Mg,Ti) and MCP-N (LiF:Mg,Cu,P) thermoluminescent detectors to X- and gamma-rays. Radiation Measurements, 2008, 43, 616-620.	0.7	11
123	Novel methods of tritium production rate measurements in HCLL TBM mock-up experiment with liquid scintillation technique. Fusion Engineering and Design, 2011, 86, 2429-2432.	1.0	11
124	Measurements of high-temperature emission spectra of highly irradiated LiF:Mg,Cu,P (MCP-N) TL detectors. Radiation Measurements, 2013, 56, 183-186.	0.7	11
125	Thermoluminescence fading studies: Implications for long-duration space measurements in Low Earth Orbit. Radiation Measurements, 2013, 56, 303-306.	0.7	11
126	Relative thermoluminescent efficiency of LiF detectors for proton radiation: Batch variability and energy dependence. Radiation Measurements, 2013, 56, 205-208.	0.7	11

#	Article	IF	Citations
127	Composite thermoluminescent detectors based on the Ce3+ doped LuAG/YAG and YAG/LuAG epitaxial structures. Radiation Measurements, 2019, 128, 106124.	0.7	11
128	Photoluminescence and Thermoluminescence of the Oxygen-Deficient YAG, YAP, and YAM Phosphors. Acta Physica Polonica A, 2018, 133, 977-980.	0.2	11
129	Dosimetry of heavy charged particles with thermoluminescence detectors-models and applications. Radiation Protection Dosimetry, 2004, 110, 315-318.	0.4	10
130	Absorbed dose measurements of a handheld 50 kVP X-ray source in water with thermoluminescence dosemeters. Radiation Protection Dosimetry, 2006, 120, 78-82.	0.4	10
131	Thermoluminescence measurements of liquid crystal azomethines and poly(azomethines) with different shapes as thermo-detectors. Journal of Luminescence, 2010, 130, 2362-2367.	1.5	10
132	Calculation of the relative efficiency of thermoluminescent detectors to space radiation. Radiation Measurements, 2011, 46, 1728-1731.	0.7	10
133	Microdosimetric analysis of response of LiF:Mg,Cu,P (MCP-N) TL detectors for alpha-particles and ultra-high doses of gamma-rays. Radiation Measurements, 2011, 46, 1349-1352.	0.7	10
134	Evaluation of the relative TL efficiency of the thermoluminescent detectors to heavy charged particles. Radiation Protection Dosimetry, 2016, 168, 27-32.	0.4	10
135	Scintillating Screens Based on the Single Crystalline Films of Multicomponent Garnets: New Achievements and Possibilities. IEEE Transactions on Nuclear Science, 2016, 63, 497-502.	1.2	10
136	IMAGING OF PROTON BRAGG PEAKS IN Lif. Radiation Protection Dosimetry, 2018, 178, 333-336.	0.4	10
137	OSL dosimetric properties and efficiency of Brazilian natural calcium fluoride pellets. Applied Radiation and Isotopes, 2018, 135, 166-170.	0.7	10
138	LPE Growth of Composite Thermoluminescent Detectors Based on the Lu3â^'xGdxAl5O12:Ce Single Crystalline Films and YAG:Ce Crystals. Crystals, 2020, 10, 189.	1.0	10
139	Miniature Thermoluminescent Detectors for Dosimetry in Radiotherapy. Radiation Protection Dosimetry, 2002, 101, 473-476.	0.4	9
140	The problems associated with the monitoring of complex workplace radiation fields at European high-energy accelerators and thermonuclear fusion facilities. Radiation Protection Dosimetry, 2007, 126, 491-496.	0.4	9
141	Dose perturbation behind tantalum clips in ocular proton therapy. Radiation Measurements, 2010, 45, 694-697.	0.7	9
142	High-dose high-temperature emission of LiF:Mg,Cu,P: Thermally and radiation induced loss & tecovery of its sensitivity. Radiation Measurements, 2013, 56, 171-178.	0.7	9
143	Comparative study of TL and OSL properties of LSO and LSO:Ce single crystals andÂsingle crystalline films. Radiation Measurements, 2013, 56, 196-199.	0.7	9
144	Dosimetric properties and stability of thermoluminescent foils made from LiF:Mg,Cu,P or CaSO4:Dy during long-term use. Radiation Physics and Chemistry, 2014, 104, 212-215.	1.4	9

#	Article	IF	Citations
145	Comparative analysis of the scintillation and thermoluminescent properties of Ce-doped LSO and YSO crystals and films. Optical Materials, 2014, 36, 1715-1719.	1.7	9
146	Estimation of the Time Elapsed Between Exposure and Readout Using Peak Ratios of LiF:Mg,Cu,P (MCP-N,GR200A). Radiation Protection Dosimetry, 1999, 85, 149-152.	0.4	8
147	Dosimetric properties of new cards with high-sensitivity MCP-N (LiF:Mg,Cu,P) detectors for Harshaw automatic reader. Radiation Protection Dosimetry, 2006, 125, 251-253.	0.4	8
148	On the dose response of some CVD diamond thermoluminescent detectors. Radiation Protection Dosimetry, 2006, 119, 319-322.	0.4	8
149	Response of TL lithium fluoride detectors (MTS) to high gamma radiation doses. Radiation Measurements, 2011, 46, 1878-1881.	0.7	8
150	Luminescent properties of YAlO3:Mn single crystalline films. Optical Materials, 2012, 34, 1979-1983.	1.7	8
151	Relative TL and OSL efficiency to protons of various dosimetric materials. Radiation Protection Dosimetry, 2014, 161, 112-115.	0.4	8
152	Dependence of the thermoluminescent high-temperature ratio (HTR) of LiF:Mg,Ti detectors on proton energy and dose. Radiation Measurements, 2014, 71, 39-42.	0.7	8
153	Luminescent properties of Tb and Eu activated AxB1-xAlO3 (A = Y, Lu, Gd; B = Lu; $x = 0, 0.5, 1$) mixed oxides crystals prepared by micro-pulling-down method. Radiation Measurements, 2019, 126, 106140.	0.7	8
154	OPTICALLY STIMULATED LUMINESCENCE OF LiF:Mg,Cu,P POWDER—INFLUENCE OF THERMAL TREATMENT. Radiation Protection Dosimetry, 2019, 186, 488-495.	0.4	8
155	3D Dosimetry Based on LiMgPO4 OSL Silicone Foils: Facilitating the Verification of Eye-Ball Cancer Proton Radiotherapy. Sensors, 2021, 21, 6015.	2.1	8
156	Thermoluminescence dosimetry in evaluation of liquid 32P sources for intravascular brachytherapy. Radiation Measurements, 2000, 32, 205-210.	0.7	7
157	Physical and chemical limitations to preparation of beta radioactive stents by direct neutron activation. Biomaterials, 2003, 24, 427-433.	5 .7	7
158	Dose reassessment by using PTTL method in MTS-N (LiF:Mg, Ti) thermoluminescent detectors. Radiation Measurements, 2013, 56, 389-392.	0.7	7
159	Dose estimation based on OSL signal from banknotes in accident dosimetry. Radiation Measurements, 2017, 101, 1-6.	0.7	7
160	Thermoluminescence kinetics of undoped and doped (Ti, Cu, Ce) lithium aluminate crystals. Radiation Measurements, 2017, 106, 107-112.	0.7	7
161	Luminescent and Scintillation Properties of CeAlO3 Crystals and Phase-Separated CeAlO3/CeAl11O18 Metamaterials. Crystals, 2019, 9, 296.	1.0	7
162	Luminescent properties of LiF crystals for fluorescent imaging of nuclear particles tracks. Optical Materials, 2019, 90, 1-6.	1.7	7

#	Article	IF	Citations
163	Scintillation and Energy-Storage Properties of Micro-Pulling-Down Grown Crystals of Sc3+- and La3+-Doped YAlO3 Perovskite. Crystals, 2020, 10, 385.	1.0	7
164	Comparison of optical absorption and thermoluminescence in LiF:Mg, TI (TLD-100) following irradiation by high energy protons and 90Sr/90Y beta rays. Radiation Measurements, 2020, 132, 106249.	0.7	7
165	MICRODOSIMETRIC UNDERSTANDING OF DOSE RESPONSE AND RELATIVE EFFICIENCY OF THERMOLUMINESCENCE DETECTORS. Radiation Protection Dosimetry, 2020, 192, 165-177.	0.4	7
166	New TL Detectors for Personal Neutron Dosimetry. Radiation Protection Dosimetry, 1993, 47, 419-423.	0.4	6
167	Characterisation of the Low-Energy X Ray Response of Polish TLDs to Synchrotron Radiation and the Determination of Some TLD Quantities. Radiation Protection Dosimetry, 1999, 84, 169-173.	0.4	6
168	Thermoluminescent properties of CVD diamonds for radiation protection and radiotherapy applications. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 3036-3040.	0.8	6
169	Natural radiation and its hazard in copper ore mines in Poland. Acta Geophysica, 2008, 56, 505-517.	1.0	6
170	Photoluminescence of gamma-, proton- and alpha-irradiated LiF detectors. Open Physics, 2012, 10, .	0.8	6
171	Radial distribution of dose within heavy charged particle tracks – Models and experimental verification using LiF:Mg,Cu,P TL detectors. Radiation Measurements, 2014, 71, 242-246.	0.7	6
172	Luminescent properties of Mn-doped Y3Al5O12 single crystalline films. Optical Materials, 2014, 36, 1680-1684.	1.7	6
173	Thermoluminescent Properties of Undoped and Ce-Doped Lutetium Orthosilicate and Yttrium Orthosilicate Single Crystals and Single Crystalline Films Scintillators. IEEE Transactions on Nuclear Science, 2014, 61, 276-281.	1.2	6
174	Sensitivity changes of LiF:Mg,Ti and LiF:Mg,Cu,P TL detectors after proton exposures. Radiation Measurements, 2015, 74, 26-30.	0.7	6
175	Luminescent and scintillation properties of Sc 3+ and La 3+ doped Y 2 SiO 5 powders and single crystalline films. Journal of Luminescence, 2016, 179, 445-450.	1.5	6
176	Influence of cosmic radiation spectrum and its variation on the relative efficiency of LiF thermoluminescent detectors â€" Calculations and measurements. Radiation Measurements, 2016, 88, 33-40.	0.7	6
177	Two-dimensional thermoluminescence method for checking LiF crystals homogeneity. Journal of Crystal Growth, 2017, 457, 320-324.	0.7	6
178	Thermally induced fading of Mn-doped YAP nanoceramics. Journal of Physics: Conference Series, 2018, 987, 012009.	0.3	6
179	Proton Irradiation of 7LiF:Mg,Ti Thermoluminescent Detectors: Influence of Dopant Concentration on Dose Response and LET Dependence of TL Efficiency. Radiation Protection Dosimetry, 1999, 84, 179-184.	0.4	5
180	Investigations of doses on board commercial passenger aircraft using CR-39 and thermoluminescent detectors. Radiation Protection Dosimetry, 2004, 110, 377-380.	0.4	5

#	Article	IF	CITATIONS
181	Luminescent and scintillation properties of YAG:Dy and YAG:Dy,Ce single crystalline films. Radiation Measurements, 2016, 90, 308-313.	0.7	5
182	Proton induced target fragmentation studies on solid state nuclear track detectors using Carbon radiators. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 888, 196-201.	0.7	5
183	Thermoluminescent Properties of Cerium-Doped Lu2SO5 and Y2SiO5 Single Crystalline Films Scintillators Grown from PbO-B2O3 and Bi2O3 Fluxes. Crystals, 2018, 8, 120.	1.0	5
184	Range-based method of alpha-particle spectrometry using LiF fluorescent nuclear track detectors. Measurement: Journal of the International Measurement Confederation, 2020, 160, 107837.	2.5	5
185	New efficient OSL detectors based on the crystals of Ce3+ doped Gd3Al5â^'xGaxO12 mixed garnet. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 273, 115448.	1.7	5
186	Microdosimetric Interpretation of the Anomalous Photon Energy Response of Ultra-Sensitive LiF:Mg,Cu,P TL Dosemeters. Radiation Protection Dosimetry, 1993, 47, 31-35.	0.4	5
187	Optimisation of LiF:Mg,Ti Detectors for Dosimetry in Proton Radiotherapy. Radiation Protection Dosimetry, 1999, 85, 367-371.	0.4	4
188	Post-stenting Intravascular Brachytherapy Trials on Hypercholesterolemic Rabbits Using 32P Liquid Sources: Implications for Prevention of In-Stent Restenosis. CardioVascular and Interventional Radiology, 2002, 25, 307-313.	0.9	4
189	Surface fittingâ€"new tool for spectrally resolved thermoluminescence analysis. Radiation Measurements, 2004, 38, 793-797.	0.7	4
190	Post-Dilatation Intravascular Brachytherapy Trials on Hypercholesterolemic Rabbits Using 32P-Phosphate Solutions in Angioplasty Balloons. CardioVascular and Interventional Radiology, 2004, 27, 42-50.	0.9	4
191	Analysis of spectrally resolved thermoluminescence of LiF:Mg,Cu,P detectors by the surface fitting method using algorithm for unrestricted peak positions. Radiation Protection Dosimetry, 2006, 119, 89-92.	0.4	4
192	Microdosimetric modelling of the response of thermoluminescence detectors to low- and high-LET ionising radiation. Radiation Protection Dosimetry, 2006, 122, 378-381.	0.4	4
193	Spectrally resolved thermoluminescence and the surface fitting analysis. An application to LiF:Mg,Cu,P. Optical Materials, 2008, 30, 696-698.	1.7	4
194	Luminescent and scintillation properties of YAG:Tm and YAG:Ce,Tm single crystalline films. Optical Materials, 2014, 36, 1685-1687.	1.7	4
195	Position of LiF:Mg,Cu,P TL peak as an alternative method for ultra-high-dose dosimetry. Radiation Measurements, 2020, 139, 106486.	0.7	4
196	Characterisation of Thermoluminescent LiF:Mg,Ti (MTS-N) Detectors in the 85-550 K Temperature Range. Radiation Protection Dosimetry, 2002, 100, 297-300.	0.4	3
197	Response of TL Dosemeters to Cosmic Radiation On Board Passenger Aircraft. Radiation Protection Dosimetry, 2002, 100, 549-552.	0.4	3
198	Thermoluminescence dosimetry of liquid sources of variable size and composition. Radiation Measurements, 2002, 35, 245-249.	0.7	3

#	Article	IF	Citations
199	Dosimetry of BNCT beams with novel thermoluminescent detectors. Radiation Protection Dosimetry, 2004, 110, 623-626.	0.4	3
200	Thermoluminescent method for the measurements of tritium production in neutronics experiments. Radiation Measurements, 2010, 45, 736-738.	0.7	3
201	Some features of YAlO <inf>3</inf> :Mn-based crystalline and ceramic TL detectors., 2014,,.		3
202	Luminescent and scintillation properties of the Pr3+ doped single crystalline films of Lu3Al5â^'xGaxO12 garnet. Radiation Measurements, 2016, 90, 183-187.	0.7	3
203	High-Dose TL Dosimetry of Reactor Neutrons. Radiation Protection Dosimetry, 2018, 180, 235-239.	0.4	3
204	Study of radioluminescence in LiMgPO4 doped with Tb, B and Tm. Radiation Measurements, 2020, 136, 106408.	0.7	3
205	Microdosimetric modeling of the relative efficiency of the optical absorption of LiF:Mg,Ti (TLD-100) detectors exposed to 1H and 4He ions. Radiation Measurements, 2021, 145, 106594.	0.7	3
206	Organic–inorganic detectors with Al2O3:C microcrystallites. Radiation Measurements, 2014, 71, 174-177.	0.7	2
207	Luminescent properties of Tm 3â^'x Lu x Al 5 O 12 :Ce single crystalline films. Optical Materials, 2017, 69, 444-448.	1.7	2
208	Study of impurities in alpha-Al 2 O 3 powders and crystals using EPR spectroscopy. Chinese Journal of Physics, 2017, 55 , 2100-2105.	2.0	2
209	THE 13TH SYMPOSIUM ON NEUTRON AND ION DOSIMETRY NEUDOS-13. Radiation Protection Dosimetry, 2018, 180, 1-2.	0.4	2
210	MPD growth of single crystals of Ce3+ doped Gd3â^'xLuxAl5â^'yGayO12 mixed garnets and their luminescent, scintillation and photoconversion properties. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2020, 262, 114751.	1.7	2
211	Investigations of the influence of Am-241 photons on the measured alpha particle response of luminescent materials. Radiation Measurements, 2020, 134, 106331.	0.7	2
212	Popular Medicines as Radiation Sensors. IEEE Sensors Journal, 2021, 21, 16637-16643.	2.4	2
213	New TL Detectors for Personal Neutron Dosimetry. Radiation Protection Dosimetry, 1993, 47, 419-423.	0.4	2
214	Microdosimetric Analysis of the Response of LiF Thermoluminescent Detectors for Radiations of Different Qualities. Radiation Protection Dosimetry, 1994, 52, 405-408.	0.4	2
215	Validation of a Radiotherapy Treatment Planning System using an Anthropomorphic Phantom and MTS-N Thermoluminescent Detectors. Radiation Protection Dosimetry, 2002, 101, 477-480.	0.4	1
216	Luminescent, Scintillation, and Photoconversion Properties of Microâ€Pullingâ€Downâ€Grown Single Crystals of Ce 3+ â€Doped Gd 3â^' x Lu x Al 5â^' y Ga y O 12 Garnets. Physica Status Solidi (B): Basic Research, 2020, 257, 1900429.	0.7	1

#	Article	IF	CITATIONS
217	Development of a method of passive measurement of radiation doses at ultra-high dose range. , 2008, , .		o
218	TSL properties of A <inf>2</inf> SiO <inf>5</inf> and A <inf>2</inf> SiO <inf>5</inf> :Ce (A=Y, Lu) single crystals and single crystalline films. , 2012, , .		0
219	TL and OSL properties of LiMgPO <inf>4</inf> :Tb,B., 2014, , .		O
220	OSL properties of lithium aluminate crystals grown with Micro-Pulling-Down technique., 2014,,.		0
221	Thermoluminescence properties of LSO:Ce and YSO:Ce films grown from PbO and Bi <inf>2</inf> 0 <inf>3</inf> fluxes. , 2014, , .		O
222	Glinian litu - nowy detektor dozymetryczny. Przeglad Elektrotechniczny, 2015, 1, 119-122.	0.1	0
223	Thermoluminescent Dosimetry of Cosmic Radiation in Space. , 2019, , 285-317.		O
224	Uniformity of Thermoluminescence and Optically Stimulated Luminescence Signals Over the Length of Doped LiMgPO4 Crystal Rods Grown by Micro-Pulling-Down Method. Materials, 2021, 14, 132.	1.3	0